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Introduction
Increasing scientific attention up to the 

year 2025 has accumulated knowledge 
about biologically plausible mechanisms by 
which vitamin D deficiency leads to adverse 
consequences on the central nervous system 
(CNS) [1,2]. Multiple sclerosis (MS) has been 
and remains the focus of research [3]. The effects 
of 1,25-dihydroxy-vitamin D 3 (1,25(OH)2D3/
calcitriol), a pleiotropic secosteroid hormone 
on the peripheral nervous system (PN) have not 
been the focus of attention to date. Particularly 
in treatment recommendations/guidelines 
for chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP) and 
recommendations for local practice, attention 
to vitamin D (Vit D) as a tolerogenic adjuvant 
is limited [4,5].

CIDP is the most common peripheral 
neuropathy (PNP), with a prevalence of 
approximately 3 per 100,000 (1.0–8.9) and an 
incidence of less than 1–1.6 per 100,000 per 
year [6,7,8]. The pooled prevalence rate is 
2.81/100,000 [9].

CIDP is an immune-mediated peripheral 
nerve (PN) syndrome characterized by a 

progressive or relapsing-remitting course 
lasting more than eight weeks and typically 
resulting in proximal and distal weakness and 
sensory loss in the extremities [10-13].

CIDP is a heterogeneous, clinically well-
described disease and is immunologically 
mediated by numerous, still poorly understood 
mechanisms and causes significant disability, 
particularly in treatment-refractory individuals 
with CIDP (PwCIDP) [14-16].

However, there is no single pathognomonic 
marker yet. Cell-mediated, humoral, and 
complement pathways, inflammasomes, 
and cytokine-driven immune responses 
synergistically target the myelin of the 
peripheral nervous system (PNS) [13, 14]. 
Nerve root and peripheral nerve inflammation 
leads to segmental demyelination and is also 
characterized by remyelination [17].

Vitamin D deficiency was already verified 
in 2014 in patients with primary immune-
mediated peripheral neuropathies, particularly 
in Guillain-Barré syndrome (GBS) and CIDP, 
and monitoring of serum 25(OH)D [ calcifediol 
] levels (s25(OH)D) with the consequence 
of achieving an optimal s25(OH)D value to 
alleviate symptoms was recommended [18], 
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Network of cytokines and chemokines in PwCIDP
Previous evidence has shown that interleukins (IL)-2, IL-6, IL-

17, CXCL 10, CCL3, and tumor necrosis factor alpha (TNF-α) 
are elevated in PwCIDP and orchestrate inflammation [39,40]. 
This composition of cytokines and chemokines determines 
the continuous recruitment of immune cells and weakens the 
integrity of the BNB, allowing antibodies to gain access to the 
endoneurium [39,41,42,43].

Because IL-6 plays a crucial role in CIDP as an inflammatory 
cytokine and in the immune response through differentiation 
and activation of T cells, influencing this dysregulation 
is a therapeutic target [44-46]. Furthermore, IL-6 induces 
immunoglobulin production [47].

Calcitriol has been shown to inhibit TNF-alpha levels and 
increase IL-6 serum levels in various contexts and thus slow 
down inflammation. Vit D supplementation could have a 
dampening effect on inflammation [48-56].
Disruption of the blood-nerve barrier (BNP)- 1,25OH)2D3 
as a sealing tool

If the pathogenesis of CIDP is characterized by the early 
breakdown of BNP and the transfer of activated T cells, 
macrophages, antibodies and complement is thus only possible, 
all therapeutic attempts should be made to reduce the increased 
permeability in the long term and effectively.

While the blood-brain barrier (BBB) has been well 
characterized by research on multiple sclerosis (MS) in recent 
decades, the BNB of the peripheral nervous system is less well 
defined [57]. Molecular, structural, and functional similarities 
exist between the BBB and BNB [57]. For sealing the barriers, 
both BBB and BNB, Tight (TJ) is involved. Claudins have an 
essential barrier function and occludine ensures tightness [58].

In multiple sclerosis (MS), the protective effect of calcitriol 
on the fragile BBB has been explained by upregulation of TJ 
proteins and downregulation of adhesion molecules [59,60]. In 
experiments, 1,25(OH)2D3 could inhibit the downregulation of 
zonula occludens (ZO-1) [61]. Claudin-5, a member of the TJ, 
which is a paracellular permeability regulator, is present in both 
the BBB and BNB [15,62-64].

 However, PwCIDP shows a significant reduction in serum 
levels of Clauding-5 and translocated ZO-1 [15,65,66]. 
1,25(OH)2D3 was able to reverse the decrease in the expression 
of TJs, zonula occludens , claudin-5, and occludin [67]. A 
deficiency of VDR (vitamin D receptors) led to a reduction of 
claudin-5 [68]. Experimentally, it was shown that vitamin D 
deficiency reduced the expression of the tight junction proteins 
occludin and claudin-5 [69]. However, calcitriol could increase 
claudin-5 [70].

Vitamin D regulates neurotrophic factors. 1,25(OH)2D3) 
induces the expression of nerve factor (NGF) in neurons. 
Neural stem cells upregulate brain-derived growth factor 
(BDNF), glial cell lineage-derived nerve factor (GDNF), and 
ciliary neurotrophic factor (CNTF) in the presence of calcitriol 
[71]. These effects may have a positive impact on the immune 
homeostasis of PwCIDP, as they showed a reduction in BDNF, 
GDNF, and granulocyte-macrophage colony-stimulating factors 
(GM-CSF) [28].

Oxidative stress is also associated with demyelinating diseases 
[72,73]. However, oxidative stress is reduced at relevant serum 
25(OH)D levels >30 ng/mL. Optimal 25(OH)D levels are a 
prerequisite, as suboptimal levels lead to the opposite [71].

the transformation of vitamin D supplementation (vit D suppl) 
into practice is a gradual process.

Rapid diagnosis and treatment are essential to prevent mortality 
and ongoing morbidity [17]. Hypovitaminosis D is a relevant 
risk factor for acute acquired immune-mediated inflammatory 
demyelinating diseases, even in childhood [19]. The potential 
for improving the outcome of CIDP through supportive vit 
D suppl based on pathophysiological findings should be 
highlighted. Although the beneficial synergism of vitamin D is 
not yet incorporated into a therapeutic concept, it does offer a 
side-effect-free add-on therapy compared to standard therapy 
and newer therapies (B-cell inhibition, proteasome inhibitors, Fc 
receptor modulation, CAR-T cell therapy, etc.) with appropriate 
laboratory monitoring. This practice- and patient-oriented, non-
systematic review is intended to promote the accelerated transfer 
of scientific findings (up to 2025) to PwCIDP. The currently 
known complex pathophysiological mechanisms of vitamin D 
supplementation are promising and should encourage therapists 
from various disciplines to improve the course of the disease, 
especially in cases of therapy resistance.
Etiology and pathophysiology of CIDP

Although the most common cases of CIDP are idiopathic 
(familial/genetic), there is evidence of relationships between 
previous diseases (including respiratory and intestinal 
infections, HIV, hepatitis B, C, E, EBV, CMV, HTLV-1, Zika 
virus, Bartonella henselae, Mycoplasma pneumonia, systemic 
lupus erythematosus) [20-23]. Three players are in the focus of 
pathoimmunology:

T cell , B cell and complement [24].
By 2025, a chorus of diverse immune components, such as 

macrophages, T cells, B cells, activated antigen-presenting 
cells, cytokines, and the complement system, have been verified 
to be involved in CIDP pathogenesis [15,25-28]. Elevated TNF-
alpha levels in PwCIDP during the active phase of the disease 
were already verified 25 years ago [29].

Further details in Caballero-Àvila et al. [13].
Cellular immune response

Immune homeostasis is disturbed in autoimmune diseases by 
dysregulation of pathogenic effector cells (Th17) and Treg cells 
[30].

The activity of proinflammatory CD4+ T cells, IFN 
-gamma-producing Th1 and IL-17-producing Th17 cells, 
and polyfunctional CD8+ T cells is increased, and the anti-
inflammatory regulatory function of CD4+CD25(high)FoxP3+ 
regulatory T cells (Treg) is reduced [31,32]. Treg dysfunction 
(defect in suppressive function) is a key factor in the underlying 
immunological dysfunction [32,33]. CD4+, CD8+, and 
macrophage infiltrates have been verified histopathological in 
the endoneurium at an early stage [34].

1,25(OH)2D3 inhibits the differentiation of Th17 cells by 
regulating NF-kB activity and IL-17 expression [35]. Calcitriol 
decreases IFN-gamma secretion, increases IL-10 production, 
and generates both conventional CD25+Foxp3+ regulatory T 
cells (Tregs) and IL-10-secreting regulatory cells type I (Tr1), 
which are essential for immune homeostasis [36].

Both resident and infiltrating macrophages are at the forefront 
of disrupting the integrity of the blood-nerve barrier (BNB). The 
inflammatory process is promoted by CD4+-activated cellular 
release of cytokines and chemokines, leading to further macrophage 
activation [14,37,38]. The inflammatory process is potentiated by 
high CD8+ cytotoxic T cell activity [37] (Figure 1).



Page 3 of 20

Hans-Klaus Goischke. Neurology & Neuroscience. 2025;6(6):028

Neurol Neurosci. (2025) Vol 6 Issue 6

Macrophages – an active element in the autoimmune 
process in CIDP

Because macrophages (MK) are involved in autoimmune 
neuropathies, they may also be a therapeutic target of 
1,25(OH)2D3. Polarization of classically activated MK (M1) 
to alternatively activated MK (M2) by calcitriol produces an 
immunosuppressive effect [74-76]. The balance between these 
two subsets is restored [77].
B cell homeostasis is disturbed in CIDP

B cell homeostasis is significantly altered in CIDP [27]. 
In PwCIDP , a reduction in naive B cells, plasma cells, and 
regulatory B cells (Breg cells) as well as an increase in the 
proportion of switched memory B cells has been observed. 
The ratio of memory B cells in the peripheral blood and IL-6 
expression levels are associated with the severity of peripheral 
nerve (PN) injury [27].
Treg cells in PwCIDP

PwCIDP showed a significant reduction in the number and 
suppressive function of Tregs [28,78]. (Figure 2).

1,25(OH)2D3 could increase the number of tolerogenic 
Increase Treg cells and promote the necessary number even in 
old age, thus contributing to homeostasis [28, 79-82].
MicroRNAs as a feature of an effective and controlled 
immune response

The relevance of Treg cells is supported by the finding that they 
prevent aberrant immune responses and thus have a protective 
effect against autoimmunity. microRNA-142 has been identified 
as a central regulator of the development, homeostasis and 
function of Treg cells.. MicroRNA-142 attenuates IFN-gamma 
production and reactivity [83,84].

Figure 1. Vitamin D and immune cells crosstalk. Vitamin D (cal-
citriol) directly and indirectly influences and regulates both innate 

and adaptive immune cells, which widely express the vitamin D 
receptor (VDR). RXR—retinoic acid receptor; NK—natural killer 

cells; ADCC—antibody-dependent cell-mediated cytotoxicity; IL—
interleukin; MHCII—major histocompatibility complex class II; 

Th—T helper; TLR—toll-like receptor; green arrow—stimulation; 
orange arrow—inhibition. Original Figure from: Gallo D, Baci D, 

Kustrimovic N, Lanzo N, Patera B, Tanda ML, Piantanida E, Mortara 
L. How Does Vitamin D Affect Immune Cells Crosstalk in Autoim-

mune Diseases? International Journal of Molecular Sciences. 2023; 
24(5):4689. https://doi.org/10.3390/ijms24054689 [80].

Figure 2. Proposed mechanism of age and immunological contri-
butions to typical CIDP pathology. In CIDP, there is a decline in 

regulatory T cells which are opposite to the age-related increase in 
these cells. In combination with a decline in naïve T cells with age, 

this May contribute to the CIDP- related increase in Th17 cells, thus 
creating an imbalance in Tregs and Th17 cells. due to dysregulation 
of the immune system, this May allow for further pathological con-

tributions of the infiltrating natural killer T cells and distorted CD8+ 
T cells repertoire seen in CIDP. Also, with age, there is an increase 

in macrophages within the peripheral nerve and in combination with 
an increase in macrophages due to CIDP, and this could contribute 

to an age-related increase in disease severity. Orange arrows = age-
related contribution ; green arrows = disease-related contribution; 

combination of green and orange arrows = cumulative contribution of 
age and disease. Original Figure from: Hagen, KM, Ousman, SS The 
immune response and aging in chronic inflammatory demyelinating 
polyradiculoneuropathy. J Neuroinflammation 2021;18, 78. https://

doi.org/10.1186/s12974-021-02113-2 [28].

Figure 3. Schematic representation of the putative roles of calcitriol 
in the peripheral nervous system. IGF-1, insulin-like growth factor-1; 

MAPK, mitogen activated protein kinase; PKC, protein kinase C; 
PROG, progesterone ; RA, retinoic acid ; Shh, Sonic hedgehog .

Original illustration from: Faye PA, Poumeaud F, Miressi F, Lia AS, 
Demiot C, Magy L, Favreau F, Sturtz FG. Focus on 1,25-Dihydroxyvi-

tamin D3 in the Peripheral Nervous system. Front Neurosci . 2019; 
13:348. doi: 10.3389/fnins.2019.00348. [88].
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MicroRNA is modulated by vitamin D [85]. There is evidence 
that vitamin D alters the expression of enzymes involved in 
microRNA biogenesis as well as the direct and indirect induction 
of microRNA transcription [85]. The regulation of mRNA levels 
via microRNA signaling is recognized as a potential mechanism 
of action of calcitriol [86]. Increasing data show an influence 
of calcitriol on microRNA in various diseases [87]. The role 
of calcitriol on the peripheral nervous system is complex and 
multifaceted [88]. (Figure 3)
Role of the complement pathway in CIDP

There is extensive evidence for complement activation (CS) 
both systemically and in the PN in CIDP. It is suspected that 
persistent complement activity contributes to the chronicity of 
CIDP, and IVIG does not significantly reduce activation in the 
long term [38,89]. Elevated C5a levels have been observed in 
serum and CSF in PwCDIP [26]. On the other hand, reduced 
severity, demyelination, and inflammation have been verified in 
complement deficiency [15,90,91].

The CS is a complex system and an effector of innate and 
adaptive humoral immunity, and disturbances in its regulation 
trigger various neurological autoimmune diseases [92]. 
Autoantibodies can activate the CS and lead to tissue damage. 
Once activated, the complement cascade can trigger numerous 
local and systemic effects [93]. C5a subsequently leads to the 
proliferation and survival of effector T cells and simultaneously 
inhibits the induction and function of Treg cells; calcitriol 
counteracts this [79,82,94]. On the other hand, complement 
inhibitors may influence the adaptive immune response by 
reducing the stimulation of dendritic cells, T cells, and B cells 
via complement receptors [93,94].

Early intervention in inappropriate complement activation 
or control at the onset of CIDP should be a goal in PwCIDP 
. The theoretical basis for the influence of 1,25(OH)2D3 is 
provided by several observations. The vitamin DBP-[ VitD 
binding protein]-VDR axis is crucial for maintaining immune 
homeostasis [95]. (Figure 4)

Vitamin D-binding protein (DBD) is a multifunctional plasma 
protein that can significantly enhance the chemotactic response 
to the complement fragment C5a. 1,25(OH)2D3 bound to DBP 
specifically inhibits the co-chemotactic activity of C5a [96].

Physical function was better when adequate s25(OH)D 
levels were associated with low complement levels. There 
was a negative association between complement C4 levels and 
physical activity in daily life [97].

Complement triggers CD4+ T helper cell (Th1) responses, 
and autocrine vitamin D signaling shuts down pro-inflammatory 
programs of Th1 cells. As part of a shutdown program, IFN-
gamma is suppressed and the anti-inflammatory IL-10 is 
enhanced [98].

Hypovitaminosis D leads to abnormal expression of 
complement proteins, which in turn induces abnormal activation 
of the complement system [99].

It has also been shown that interactions exist between 
1,25(OH)2D3, alpha-1-antitrypsin, and C3a. A deficiency 
of alpha-1-antitrypsin and vitamin D is associated with 
inflammation and autoimmunity [77, 100]. In addition, vitamin 
D positively modulates the immune and clinical response to 
glucocorticoids (GC). Thus, a GC-sparing effect could also result 
from vitamin D supplementation. In the autoimmune disease 
myasthenia gravis, complement inhibitory therapy could lead 
to a GC-sparing effect [101]. MAC (Membrane attack complex) 
destroys the structural integrity of the myelin sheath in PwCIDP 
and enhances demyelination induced by T cell and macrophage 
activity [ 38 ]. The effect of 1,25(OH)2D3 on MAC is indirect 
through its influence on cytokine production, thereby inhibiting 
MAC formation in autoimmune diseases and reducing cell 
damage [99, 102-104]. (Graphical Abstract)

Figure 4. Role of complement in CIDP pathogenesis. Original il-
lustration from : Querol LA, Hartung HP, Lewis RA, van Doorn PA, 
Hammond TR, Atassi N, Alonso-Alonso M, Dalakas MC. The Role 
of the Complement System in Chronic Inflammatory Demyelinating 
Polyneuropathy: Implications for Complement-Targeted Therapies. 

Neurotherapeutics. 2022 ; 19(3):864-873. doi : 10.1007/s13311-022-
01221-y. [15].

Graphic abstract 
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If IVIG therapy enables complement fixation and inhibition 
and concomitant Vit D administration improves this effect, Vit 
D supplementation becomes plausible [77,105].

Too little is the earliest daily Vit D suppl Initiated due to years 
of controversial discussions about normal values of 25(OH)D 
and daily vitamin D dosage [106-109]. Doses recommended 
for the general population to improve health are largely used in 
practice out of unfounded caution against overdose. Intoxication 
can easily be ruled out by monitoring serum calcium levels and 
25(OH)D levels. [110-114].

Intoxication is only to be expected at s25(OH)D levels > 150 
ng/ml [115]. Without considering the therapeutic window, as is 
also the case in other autoimmune diseases such as MS [116-
117], the potential of vitamin D as a tolerogenic adjuvant cannot 
be optimally utilized.
Interface between NLRP3 inflammasome and vitamin D

The role of vitamin D3 in modulating the interplay 
between NLRP3 (NLR Family Pyrin Domain Containing 
3)- Inflammasomes are receiving increasing attention. 
1,25(OH)2D3, the active form of vitamin D, and the NLRP3 
inflammasome are associated with each other, particularly 
regarding the improvement of inflammatory processes in 
inflammasome -mediated autoimmune diseases [118]. The 
inflammasome plays an active role in the earliest stages of disease 
development in neurodegenerative diseases [119]. Calcitriol 
can influence the activation of the NLRP3 inflammasome by 
inhibiting the ROS-NLRP3-IL-1 beta signaling axis, leading to 
a reduction in inflammation [120].

The NLRP3 inflammasome is a protein complex that plays 
an important role in inflammatory signaling. In addition to 
nerve damage, excessive activation also leads to pain symptoms 
[121,122]. Activation of the NLRP3 inflammasome leads to the 
release of proinflammatory cytokines, such as IL-1 beta, IL-6, 
IL-17, and IL-18, in the serum of PwCIDP [123,124]. There is a 
positive correlation between NLRP3 inflammasome levels and 
the severity of CIDP disease [124].

Vit D receptor (VDR) signaling inhibits NLRP3 inflammasome 
activation and has the potential to be a treatment target for 
diseases involving inflammasome -associated mechanisms 
[125].
Synergism of 1,25(OH)2D3 and methylprednisolone 
through upregulation of the glucocorticoid receptor 

Another argument for Vit D supplementation in PwCIDP is 
the increase in the efficacy of scheduled glucocorticoid therapy 
(GC) through mTORc1 (mechanistic target of rapamycin 
complex) inhibition. A reduced s25(OH)D level could lead to 
reduced expression of the GK (GC) receptor (GCR) in T cells, 
resulting in reduced induction of T cell apoptosis. However, the 
increase in GCR protein is dependent on the dose of vitamin D 
administration [126].

A similar potentiating mechanism has been described for 
the GC dexamethasone [127]. Administration of vitamin D 
and dexamethasone increased the anti-inflammatory IL-10 
induction [128]. Vit D may enhance steroid responsiveness by 
upregulating the expression of steroid receptor GR-α. [129]. A 
glycoprotein-sparing effect of vitamin D is discussed [130]
Calcitriol to reduce adverse events in long-term GC 
therapy

Therapeutic doses of GC can reduce vitamin D receptors 

in various tissues and cells, leading to vitamin D resistance. 
Therefore, there is a consensus to use cholecalciferol to prevent 
GC-induced osteoporosis [107,131,132].

For long-term GC therapy, a minimum daily dose of vitamin 
D of 400–1000 IU/ day is required for bone health [133]. If the 
tolerable upper limit of 4000 IU/ day is not exceeded, elevated 
s25(OH)D levels are generally not to be expected [134].

The effect of a given daily dose on s25(OH) levels is 
individual and depends on numerous factors, such as body 
weight, degree of obesity, absorption, diet, CYP2R1 activity, 
single nucleotide polymorphisms [SNPs] (e.g. SNPs in the 
VDR gene) and vitamin D binding protein. Medications, such 
as PwCIDP and dexamethasone therapy, can increase VitD 
degradation [107,135].
1 ,25(OH)2D3 also increases GK-induced suppression of 
IFN-gamma and granzyme B.

T helper cells 17.1, which are characterized by the expression 
of high IFN-gamma, high IL-17 levels, GM-CSF, granzyme 
B, and CD 4+ levels exhibit the property of overexpression of 
multidrug resistance protein 1 (MDR1). This can render them 
refractory to GC. 1,25(OH)2D3 has been shown to improve GC 
sensitization [136].
1,25(OH)2D3 supports the immunomodulatory effects 
of IVIG

Calcitriol may synergistically accompany short-term and long-
term IVIG therapy, both in monophasic and chronic relapsing 
or chronically progressive CIDP [137]. The immunomodulatory 
effect of immunoglobulins, which leads to a reduction in Th-
17 cell proliferation and IL-17 secretion and the further 
downregulation of proinflammatory cytokines, is also enhanced 
by 1,25(OH)2D3. The increase in Treg cells is the target of both 
therapeutic agents [13,80,138-140].
Pain Relief and Association with Vitamin D

The prevalence of pain (of any type, but with no alternative 
cause other than CIDP) at any time during CIDP was estimated 
as 46% in a systematic review [141] and varied between 
7% and 72% in different studies, reviewed by Thakur et al. 
[142,143,144].

Reduced s25-hydroxyvitamin D levels correlate well with 
the prevalence sensory neuropathy in diabetes mellitus and the 
severity of peripheral neuropathy [145].

In patients with rheumatoid arthritis, vitamin D deficiency 
could be a plausible cause of neuropathic pain. Pain perception 
in the peripheral nerves may be altered by hypersensitivity and 
hyperinnervation of the pain-transmitting nerve fibers [146, 
147, 148]. Hypovitaminosis D enables increased inflammatory 
activity and leads to imbalances in interleukins (IL), TNF-alpha, 
and the regulation of macrophage activity [149]. Neuropathic 
pain is the result [146, 150]. Because hypovitaminosis D leads 
to pain exacerbation, and optimal vi t D suppl  improves pain 
symptoms, and there are no contraindications, this therapeutic 
option should be a "conditio qua non."

Vit D suppl also increases the myelination of spinal ganglia 
neurons and regulates the expression of genes involved in axon 
growth. Therefore, calcitriol is a crucial neuroprotective factor 
for nerve cells [151,152].

Serum 25(OH)D levels showed an independent and inverse 
association with both the presence and severity of diabetic 
neuropathy. Each 1 ng/ml increase in s25(OH)D correlated with 
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a 2.2% and 3.4% decrease in the presence and severity of nerve 
conduction velocity (NCV) impairment, respectively [153].

Vit D is involved in the regulation of opioid signaling; 
low s25(OH)D levels are implicated in opioid side effects 
and dependence. Hypovitaminosis D increases sensitivity to 
morphine reward and exacerbates opioid dependence, leading 
to the conclusion that vit D regulates nociception and opioid 
analgesia [154,155].

In addition, it was shown that there is a significant correlation 
between low vit D levels and increased opioid consumption 
exists [152]. The urgent goal of reducing/terminating opioid 
use requires the therapist to use vitamin D as an alternative/
supplementary remedy for an effective and lasting pain 
management strategy [156].

When starting vitamin D supplementation for hypovitaminosis 
D, a single dose of up to 300,000 IU can be given initially, 
followed by approximately 2,000–5,000 IU/ day to achieve pain 
relief. The target is s25(OH)D levels of approximately 40–80 
ng/ mL [156–159].

Therefore, a mere treatment of neuropathic pain without 
vitamin D supplementation cannot be justified based on the 
findings on pathophysiology [160].
Telomeres/ Inflammation and 1,25(OH)2D3

It has long been known that the telomere/telomerase system 
is involved in relevant physiological processes in autoimmune 
diseases and is associated with premature immune senescence 
[161-163]. Telomeres are repetitive nucleotide sequences that, 
together with the associated Shelterin complex, protect the ends 
of chromosomes and maintain genomic stability [164].

Accelerated shortening of telomere length (TL) may contribute 
to neurodegeneration and cellular senescence may contribute to 
disease progression in polyneuropathies [165] .

Vitamin D may reduce telomere shortening through anti-
inflammatory and cell proliferation-inhibiting mechanisms 
[164]. Inflammation causes telomere shortening through chronic 
systemic inflammation, predominantly characterized by TNF-
alpha and IL-6 [163,166].

It has been observed that shortened leukocyte telomeres are 
associated with clinical progression in MS [167,168].

Common pathogenic features exist in inflammatory diseases 
of the PNS and CNS [165], thus allowing the hypothesis that 
experiences from MS research can be applied early in the care 
of PwCIDP.

Telomere loss can contribute to the pathogenesis of various 
autoimmune diseases [169-172]. Telomere maintenance and 
telomerase regulation are also closely linked to the activation 
and differentiation of T and B cells [173].

Accelerated telomere loss is likely mediated by increased 
inflammation and oxidative stress. Oxidative stress (OS) is 
characterized by the imbalance between the production and 
degradation of reactive oxygen species (ROS) or reactive 
nitrogen species (RNA) [174]

Vit D has a positive effect on telomere dynamics, and this 
should have an impact on disease management [164,175,176].

Calcitriol, as an inhibitor of proinflammatory reactions, 
showed a positive association with TL [177,178] and may also 
have an influence on aging, although the results are not clear 
[179].

Vit D can attenuate oxidative stress and delay cell aging 

by improving mitochondrial homeostasis and inducing the 
expression of nuclear Factor Erythroid 2- related factor 2 (Nrf2) 
[180]. Furthermore, 1,25(OH)2D3 deficiency promotes skeletal 
muscle cell senescence through oxidative stress and impairs 
muscle regeneration [181,182].

For example, calcitriol may be indirectly beneficial through 
inhibition of pro-inflammatory TNF-alpha and IL-6, because 
telomere instability is associated with inflammatory processes 
[183]. Cellular senescence in neuroinflammation is enhanced by 
oxidative stress, and vitamin D may exert a protective function 
and be incorporated into the concept of early rehabilitation 
[184,185].

Higher plasma 25(OH)D levels were associated with longer 
leukocyte telomeres [186, 187,188].

A 4-year vitamin D supplement with 2000 IU/ day reduced 
telomere loss [189]. The difference in the effects of daily vit D 
suppl compared to bolus administration was demonstrated by 
a study that also followed up for at least 4 years, but in 1,519 
elderly Australians (with 60,000 IU of vitamin D per month), 
which likely had no effect on telomere length. A predicted rather 
than measured baseline 25(OH)D serum level was used in the 
analysis. Telomere length was not measured at baseline [190].
Commonalities of CIDP/MS Pathophysiology in the 
Context of Calcitriol

In both MS and CIDP, a disruption of immune tolerance 
mechanisms leads to humoral and cellular autoimmunity of the 
myelin sheath-axon complex. Numerous case reports of patients 
with CIDP and MS confirm fundamental immunological 
similarities [191-198].

In cases of CNS-PNS involvement, immunological reactivity 
against antigens could occur in both peripheral and central 
myelin [199-201].

A repurposing /repositioning of MS immunotherapies [202] 
could also pave the way for early vit D administration. High-
dose vitamin D supplementation in clinically isolated syndrome 
(early RRMS) with 100,000 IU of vitamin D every two weeks 
has shown a reduction in disease activity [60,117,203].
Neurofilaments : The “C- Reactive Protein” of 
Neurology

The neurofilament light chain in serum is essential for 
diagnostics, monitoring disease progression, and monitoring 
treatment outcomes in neurological diseases and is therefore 
also referred to as the "neurologist's CRP." In PwCIDP , a 
correlation between sNfL and the severity of the disease and 
response to therapy has been demonstrated [204-207]. For 
example, the efficacy of sustained inhibition of complement 
activity by riliprubart , a C1s complement inhibitor, in PwCIDP 
has been demonstrated by lowering NfL levels [208].

The observed adverse effects such as nasopharyngitis could be 
proactively counteracted by Vit D supplementation [209-212].

Almost 20 years ago, the importance of determining 
sNfL in Guillain-Barré syndrome (GBS) (with similar 
pathophysiological mechanisms as in CIDP) for disease severity 
as well as prognostic markers was verified and is currently being 
reinforced to detect possible long-term morbidity in a timely 
manner [214-216].

The glial fibrillary acidic protein (GFAP) in serum can reflect/
predict disease severity, and elevated levels are associated with 
poorer treatment outcome. GFAP is an intermediate filament 
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expressed by astrocytes in the CNS and by nonmyelinating 
Schwann cells in the PN [217-223].

By using the sNfL -Z-score (age, height, weight, BMI) [Body 
mass index] ), precision is increased and advantageous over 
absolute values. Percentiles/Z-scores are interchangeable and 
reflect the deviation of a patient's sNfl from the meaning of 
healthy individuals with age and BMI match (50th percentile; 
Z-score = 0) [224].

In multiple sclerosis (MS) research, a "high " sNfL value 
was defined as >90th percentile. In individuals with MS and 
sNfL values above the 90th percentile (Z-score 1.28), an 
approximately twice as high risk of disease activity was verified 
[224,225].

Because sNfL parameters are dynamic in inflammatory 
neurological diseases, follow-up monitoring is indicated for 
interpretation [226]. There is increasing evidence of a close 
relationship between s25(OH)D levels and sNfl values [227]. 
Hypovitaminosis D has been correlated with elevated sNfL 
values [228].

The definition of sNfL values for PNP does not yet exist 
internationally. Repeated determination of sNfL also has 
the advantage of making the appropriate treatment intervals 
dependent on the course of sNfL values rather than on 
the deterioration of the clinical condition, as previously 

Figure 6.

recommended and practiced [17]. 
Furthermore, the response to GC therapy can take weeks to 

months [144]. Depending on the dosage regimen of the GC 
administered, the effect may occur in 8 weeks at the earliest, 
with maximum improvement after 6 months. Disability scores 
also improved as early as 2 weeks after initiating treatment with 
60 mg prednisolone daily [229]. Thus, the sNfL biomarker is 
also an objective, easily measurable indicator of the efficacy of 
the chosen treatment approach. (Figure 6)
Discussion

Diagnostic accuracy in CIDP is currently a major challenge 
because approximately 50% of PwCIDP are misdiagnosed and, 
in some cases, extended observation periods of the disease 
in practice elapse or must be prolonged to make a definitive 
diagnosis [230]. 5% of individuals originally diagnosed with 
GBS are later reclassified as CIDP [23,143]. Patients with 
immune-mediated neuropathies may experience phases of 
overlapping acute and chronic courses [38].

We observed a young PwCIDP patient who was initially 
defined as having recurrent GBS for 2.5 years and who received 
a high-dose opioid for pain control for two years. Further 
diagnostic testing at a university center that was initially difficult 
to access necessitated reclassification .

Various long-term observational studies of CIDP treatment 
with GC, IVIG, and plasmapheresis showed a stable course 
for more than 5 years in only 11% to 26% of PwCIDP , 12% 
experienced a progressive course, and 39% to 51% required 
long-term treatment to prevent progression. 13% developed 
severe disability [231-233]. Overall, a clinically relevant 
response is observed in only 75% to 80% of PwCIDP [202].

There is a consensus that chronic immunogenic neuropathies 
require long-term immune tolerance-inducing treatment [38].

Calcitriol acts as a neurosteroid and plays an important role 
in peripheral neuropathies, and vit D suppl could positively 
influence homeostasis by regulating various processes, such as 
myelin genesis and axon maintenance [88].

Hypovitaminosis D is associated with various harmful 
conditions such as oxidative stress, inflammation, apoptosis, 
and reduced neurotrophin levels, and supplementation can 
therefore have significant effects on the prevention or treatment 
of neurological diseases and brain health in general [234]. 
The positive role of vitamin D in neuroprotection and myelin 
regeneration is no longer in doubt [235-236].

Vit D suppl may also reduce disease severity or enhance 
the therapeutic effect of standard medications. Vit D may also 
support muscle function and improve postural and dynamic 
balance [237]. The insights into the diverse molecular 
mechanisms of 1,25(OH)2D3 on immune modulation should be 
utilized in clinical practice [77,95,238-240].

Currently, no adjuvant therapy options, such as vit D suppl, 
are “officially” considered in management decisions regarding 
acute therapy and long-term care in chronic disease.

The diverse role of vit D in modulating immune responses 
and its potential influence on immune-mediated diseases is no 
longer in doubt [241]. 

Hypovitaminosis D is a key factor in the pathobiology of 
neurological diseases because it impairs gene expression, 
calcium homeostasis, oxidative stress, and immune functions 
[242].

Transferred from research results in MS with autoimmune 
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mechanisms, a proactive approach is the decisive momentum.  
Significant control of disease disability was observed when vit 
D was provided 1 or 7 days after illness induction, being the 
earlier even more efficient.

The sealing of the BBB is crucial in MS, and it is biologically 
plausible to transfer the pathophysiological mechanisms in 
PwCIDP to the sealing of the BNB [59,61,116,243].

However, there is an unmet need for alternative therapies when 
standard CIDP therapy does not lead to complete remission or 
cure and IVIG is not widely available [244].

Concurrent psychosocial stress in PwCIDP , especially in 
young people with occupational disadvantages because of the 
autoimmune disease, also necessitates therapy optimization 
[14].
Vit D Suppl in PwCIDP as a constant player in combination 
therapy

Calcitriol is involved in myelination, axonal homogeneity of 
the PN and neuronal cell differentiation [88].

Autoreactive inflammatory cells, including effector T cells 
(Th1, Th17, CD8+ cytotoxic T cells), activated B cells, and 
plasma cells producing autoantibodies (neurofascin-155 
(NF-155), neurofascin-140 (NF-140), neurofascin-186 (NF-
186), contactin-1 (CNTN-1), contactin -associated protein 1 
(CASPR1, , Determination of myelin-associated glycoprotein 
[MAG] for differential diagnosis  and therapy)) infiltrate the PNS 
[14, 38, 245]. Dysfunctional Treg cells (CD4 +CD25+Foxp3 
regulatory T cells [Treg]) play a key role [32, 246, 247]. Tregs 
are significantly reduced in number. In addition, activated CD4+ 
T cells, B cells, macrophages, and dendritic cells are involved in 
the Treg-homeostasis [247].

Calcitriol promotes the development of regulatory T cells 
(Tregs), which help maintain immune homeostasis and prevent 
autoimmune responses [79,77,80,248].

Inflammatory mediators penetrate the leaky BNB and 
maintain the impaired barrier function. The TJs complex plays 
a central role in barrier leakage in a variety of diseases of the 
peripheral and central nervous system [58].

Despite differences in the pathophysiological mechanisms 
of CNS and PNS diseases, commonalities in the homeostatic 
influence of 1,25(OH)2D3 on the immune system in autoimmune 
diseases can be identified [60,77,80,88,95,250,251].

There is sufficient evidence that barrier leakage can be reduced 
by Vit D [67,252].

IL-6 is one of the stimulating factors in inflammatory processes 
and leads to the production of immunoglobulins. It functions 
as the most important cytokine in inflammatory diseases of the 
nervous system. S25(OH)D levels are inversely correlated with 
IL-6, and there is evidence of inhibition by calcitriol [2, 253-
258].

1,25(OH)2D3 may also play a neuroprotective role by 
acting on pericytes through an anti-inflammatory response in 
neuroinflammation [259,260].

Given the homology in the pathogenesis of central and 
peripheral neurological autoimmune diseases and a high 
biological plausibility of the effect of vit D, it should be discussed 
as the first therapeutic option in comparison with DMTs with an 
increased side effect profile [236].

In the peripheral neuropathy Charcot-Marie-Tooth neuropathy 
(genetic cause), especially in CMT type 2 D, hypovitaminosis 

D showed pathological changes in the PN and neuromuscular 
junctions. The VitD / VitD receptor (VDR) and the VEGF 
(vascular endothelial growth factor) signaling pathway play a 
role [261].

The success of vit D suppl depends on whether one is 
convinced by the findings of the dose-response relationship and 
strives for s25(OH)D values above the otherwise recommended 
daily doses, which are largely given for phosphate-calcium 
homeostasis in the healthy population, and accepts that the latter 
are not relevant for autoimmune diseases [252,262,263].

Only in this way can cell- and tissue-specific changes be 
induced at the molecular level in TJs and in other mechanisms. 
An individual s25(OH)D value can be crucial, and vit D 
suppl must take into account age, gender, and body weight 
(obesity) [77, 249, 264]. Vit D has no direct influence on 
adipose tissue. However, it can bind vitamin D because it is a 
fat-soluble vitamin, which leads to lower bioavailability in the 
bloodstream [265]. For healthy individuals, “optimal” s25(OH)
D levels of 40–90 ng/ml have been preferred [263, 266–271]. 
From a physiological point of view, serum vitamin D levels in 
autoimmune diseases should reach approximately 130 ng /ml to 
exert likely therapeutic effects [270].

 A case report demonstrates which high doses of vitamin D 
are individually necessary to achieve an immunological effect 
[271].

Serum parathyroid hormone [PTH] levels can be used to 
determine precise supplementation in autoimmune diseases. A 
low PTH plateau should be in the lower third [249].

Calcitriol suppressed the disease in experimental autoimmune 
diseases [77].

Although most patients (approximately 80-90%) respond 
to first-line therapy, some PwCDIP show an incomplete or 
inadequate response to standard therapy [144]. In the future, vit 
D suppl could be used to complement IVIG and GI therapy, 
at least within the framework of a holistic treatment concept, 
resulting in a "dual drug therapy for relapses."
Complement , NLRP inflammasome

The role of the complement system is well documented 
in peripheral neuropathies, as well as in GBS, and there is 
sufficient evidence for complement activation in CIDP [15,105]. 
The complex influence of vitamin D on maintaining immune 
homeostasis also plays a key role [95].

Vit D is associated with the expression and function of CD59, 
a protein that inhibits the membrane attack complex of the 
complement system and may influence immune responses and 
inflammation, involving CD59. CD59 can inhibit complement-
mediated lysis [ 272-277].

The physiologically activated version of vit D promotes a 
tolerogenic immunological state and modulates innate and 
adaptive immune cell responses that are impaired in PwCIDP 
[140].

Pain is a common and debilitating symptom commonly 
encountered in patients with peripheral neuropathy. Pain 
increases the burden of disease and significantly impacts 
patients' quality of life [ 141,278,279] .

Serum NfL levels can be a useful biomarker for other peripheral 
neuropathies, which is also consistent with autoimmune central 
CNS diseases such as MS [215]. Using this biomarker to 
objectify pain intensity would be of great benefit for the clinical 
and sociomedical assessment of PwCIDP.  However, studies 
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have not shown a correlation in diabetic neuropathies [280]. 
Whether these results can be extrapolated to PwCIDP requires 
further studies. However, there was a correlation with the anti-
inflammatory cytokine IL-10 in neuropathic pain [281], which 
could be increased by high-dose vit D suppl thus improving 
pain symptoms.
SNfL - Assessment of therapy effectiveness

There is a large body of evidence that sNfL (age-, weight- 
[BMI-, and sex-adjusted Z-scores) reflects neurodamage [282], 
sNfL levels reflect temporal dynamics, current or recent damage 
[283], and the anti-inflammatory neuroprotective role of 
1,25(OH)2D3 defends axonal integrity [88, 60, 228, 284-288]. 

Although there are conflicting results of vit D suppl and 
the measurement of the success of 1,25(OH)2D3 by sNfL 
determination in MS, an additive therapeutic effect is to be 
expected due to its immunomodulatory effects on the peripheral 
and central nervous systems [228, 289, 290].

The initial and subsequent continuous determination of 
sNfL not only enables the diagnosis of inflammation and 
axonal damage in the PN, but is also an essential biomarker 
in the assessment of the effectiveness/dynamics of various 
therapeutics. It is important to monitor the therapy breaks with 
sNfL [291].

A possible excessive emphasis on subjective changes in 
diagnosis and misinterpretation as a "psychosomatic problem" 
as a misdiagnosis of an existing autoimmune disease can be 
avoided by this "neurologist's CRP." Early detection of CIDP 
or "axonal damage of unknown origin" is closely linked to 
the prognosis of the disease. Psychosomatic or psychiatric 
misdiagnoses in autoimmune diseases are associated with 
long-term disadvantages, such as anxiety, depression, suicidal 
thoughts and suicide attempts, self-doubt, and less frequent 
doctor visits [292].

A major problem with the strategy of IVIG treatment cycles 
is the assessment of effectiveness. It has been clearly shown 
that self-reported treatment-related symptom fluctuations 
may not necessarily be caused by neuroaxonal damage [204]. 
On the other hand, in cases of apparently more stable disease 
progression, the determination of sNfL levels could not be 
dispensed with, as in individual cases, elevated sNfL levels 
were found in patients without symptoms [204].
Multifactorial effect of calcitriol - justification for 
supplementation 

If a daily vitamin D supplement from the onset of diagnosis 
of chronic inflammatory autoimmune demyelinating 
neuropathy were included in the long-term treatment strategy, 
the multifactorial immunological influence can be offered as a 
potential benefit to PwCIDP without disadvantages. 

This cost-effective, widely available, and low-side-effect 
long-term therapy is also recommended because human 
immunoglobulin for intravenous or subcutaneous therapy is not 
available in all countries, and the economic problem is being 
discussed with international relevance [294].

The multifactorial effect of calcitriol could potentially prolong 
the time intervals in IVIG or glucocorticoid pulse therapy or 
allow dose escalation and/or dose reduction in GC therapy.

If a daily Vit D suppl of 4000 IU to 6000IU and reaching a 
s25(OH)D value D concentration of 40-70 ng/ mL is evidence-
based and provides better protection against many negative 
health consequences in the general population [295], it is 

biologically plausible to target s25(OH)D levels in the range 
of 100 ng/mL in autoimmune diseases. The normal value 
for s25(OH)D should be defined in the clinical context and 
individually [268]. Low daily doses of 2000 IU demonstrate an 
insufficient s25(OH)D level and cannot achieve the expected 
modulations on the diseased immune system [296].

Knowing the vitamin D response index of a PwCIDP, 
whether high, medium or low response is present, allows for 
maximum benefit from vitamin D supplementation [297,298]. 
There is evidence that dysregulated TNF -alpha signaling is 
associated with either hypovitaminosis D or vitamin D hypo 
responsiveness , thus promoting autoimmunity, and that vitamin 
D promotes immune tolerance/immune homeostasis and may 
prevent autoimmunity [299].

The proven diverse immunological effects and the 
knowledge of the molecular mechanisms of calcitriol on the 
pathophysiological mechanisms of CIDP could convince 
hesitant/skeptics to accept vitamin D as an adjunctive proactive 
long-term basic therapy for the benefit of PwCIDP [242].

Vit D supplementation with maintenance of s25(OH)D levels 
of ≥ 40 ng/ml may reduce the risk of acute viral infections or 
reduce their severity. A particular benefit is expected in GC 
therapy [242,300].

This complementary therapy is motivated by patients' interest 
in comprehensive care [301-303]. Waiting for the reporting of 
randomized controlled trials (RCTs) of vit D suppl in PwCIDP 
should be reconsidered due to the years of time involved. 
Resistance to considering valid data not derived from RCTs 
should be abandoned in favor of personalized therapy [304]. 
The difficulties in designing RCTs on vit D suppl in general are 
manifold and, due to a lack of international consensus, currently 
represent an almost insoluble problem (insufficient sample sizes 
, duration, inappropriate dosage strategies, lack of consideration 
for individual vitamin D status ) [ 251,305-313].

RCTs with designs developed for drug testing are not suitable 
for Vit D suppl [306].

Repurposing of MS immunotherapies for CIDP and other 
autoimmune neuropathies [202,314,315] could also be 
introduced into daily practice for vitamin D in a “fast-forward” 
manner.

“The practice of medicine remains more an art than a Science”  
[316]
Conclusion

Chronic immune-mediated peripheral neuropathies have the 
potential to severely reduce quality of life due to persistent 
or recurrent inflammation and demyelination and place a 
significant burden on professional development, especially in 
those affected at a young age in PwCIDP.

The immunopathogenic mechanisms in CIDP should 
promote the understanding of add-on therapy with vitamin D 
supplementation. The immunomodulatory effect of calcitriol 
on the relevant players, namely T cell-mediated and humoral 
immune responses, complement activation, the involved 
cytokines and inflammasomes, as well as on ongoing axonal 
damage, promises a benefit for PwCIDP. The impaired integrity 
of BNB is also a target of 1,25(OH)2D3.

The interindividual variations in the biological effect of 
vitamin D (low, medium, high) must be considered to achieve 
an optimal therapeutic effect.

Continuous determination of the biomarker NfL in serum to 
assess the severity of axonal damage, treatment success and 
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disease dynamics must become a reality, especially since sNfL 
can guide the intensity of therapy.
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