

Correspondence

Chi-Ming Chiang, MD, PhD
Center for General Education, Chung
Yuan Christian University, Taiwan,
China

- Received Date: 20 Jan 2026
- Accepted Date: 26 Jan 2026
- Publication Date: 28 Jan 2026

Keywords

hepatic osteodystrophy; tyrosine metabolism; aromatic amino acids; trace amines; TAAR1; IGF-1 receptor; serine phosphorylation; tyrosine kinase inhibition; systems pharmacology; fragility attractor.

Copyright

© 2026 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

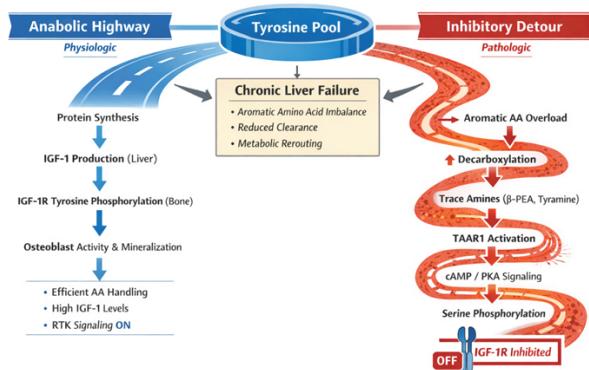
Tyrosine at the Crossroads: Hepatic Osteodystrophy as a State of Metabolic Tyrosine Kinase Inhibition

Chi-Ming Chiang^{1,2}

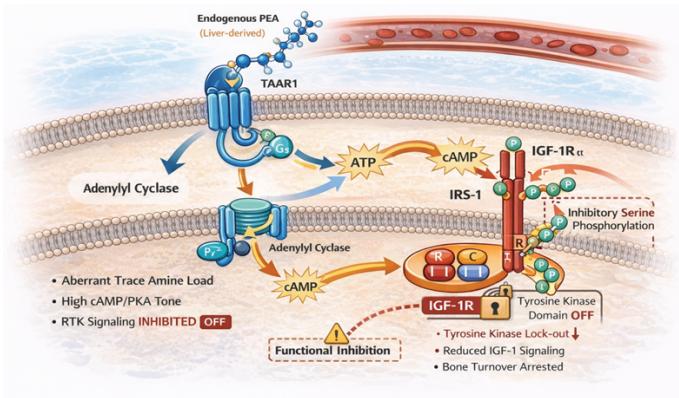
¹Center for General Education, Chung Yuan Christian University, Taiwan, China

²Department of Orthopedics, Chon-Inn Hospital, Chon-Inn Medical Corporation, Taiwan, China

Abstract


Hepatic osteodystrophy (HOD) is a prevalent and clinically consequential complication of chronic liver disease, classically attributed to multifactorial deficits in insulin-like growth factor-1 (IGF-1), vitamin D, sex hormones, and nutrition, together with inflammatory and metabolic perturbations of the liver–bone axis. While this multifactorial framing is descriptively correct, it often remains mechanistically diffuse and therapeutically additive. Here, we propose a unifying systems-biology framework—Metabolic Tyrosine Kinase Inhibition (MTKI)—that reframes HOD as an endogenous, pharmacology-like syndrome in which anabolic signaling is not only under-supplied but is also functionally suppressed at the receptor level. We posit that in advanced liver dysfunction, the aromatic amino acid pool (tyrosine and its tightly coupled phenylalanine pool) is rerouted away from canonical anabolic usage and toward decarboxylation-dependent accumulation of trace amines and false neurotransmitters, including β -phenethylamine (PEA), tyramine, octopamine, and phenylethanolamine, which have been measured in hepatic encephalopathy and severe hepatic dysfunction. We hypothesize that these metabolites function as “false hepatokines” within the skeletal niche by engaging trace amine–associated receptor 1 (TAAR1), a Gs-coupled G protein–coupled receptor that elevates intracellular cAMP and activates protein kinase A (PKA) signaling. Drawing on established models of insulin resistance—where increased cAMP/PKA tone and inhibitory serine phosphorylation can silence insulin/IGF-family receptor signaling—we propose that sustained TAAR1-driven kinase tone imposes heterologous inhibitory serine phosphorylation on the IGF-1 receptor (IGF-1R) and/or its proximal adaptor IRS-1, thereby “locking” the IGF-1R tyrosine kinase domain in a low-output state despite ligand availability. At the tissue level, this mechanism would bias bone remodeling toward a deterministic low-gain “fragility attractor,” conceptually isomorphic to skeletal remodeling disturbances observed with pharmaceutical tyrosine kinase inhibitors (TKIs). We discuss testable predictions and therapeutic strategies that move beyond replacement toward disinhibition and re-sensitization, including upstream reduction of trace-amine load and downstream restoration of IGF-1R signaling competence.

Introduction: The crisis of signal integrity


In classical medical reasoning, the liver and the skeleton are often treated as separate “organ domains”: the liver as a metabolic refinery and endocrine factory, and the skeleton as a structural scaffold that passively reflects mineral supply and hormonal status. Contemporary biology makes that separation increasingly untenable. The liver–bone axis is an active bidirectional system in which hepatic endocrine output, nutrient handling, and metabolite clearance influence the skeletal remodeling unit, while bone-derived signals reciprocally shape systemic metabolism [1–4]. Within this coupled system, the IGF-1/IGF-1R pathway is not merely supportive; it is a central anabolic program linking hepatic function to osteoblast activity, matrix mineralization, and remodeling coupling [5–9].

HOD is therefore more than a comorbidity of cirrhosis: it is a failure of the liver–bone communication channel, clinically expressed as osteopenia/osteoporosis, microarchitectural fragility, and increased fracture risk [1–3]. Traditional accounts emphasize “supply-side” deficiencies—reduced IGF-1, vitamin D dysregulation, hypogonadism, malnutrition—together with inflammatory mediators and disease-specific factors [1–7]. Yet, this framing often fails to explain a recurring clinical observation: profound anabolic unresponsiveness persists in a subset of patients even when upstream substrates are partially corrected. We therefore advance a “receiver-side” interpretation: in advanced liver disease, the skeletal anabolic receiver—particularly IGF-1R signaling competence—may be functionally suppressed by an endogenous inhibitory milieu. We term this state Metabolic Tyrosine Kinase Inhibition (MTKI).

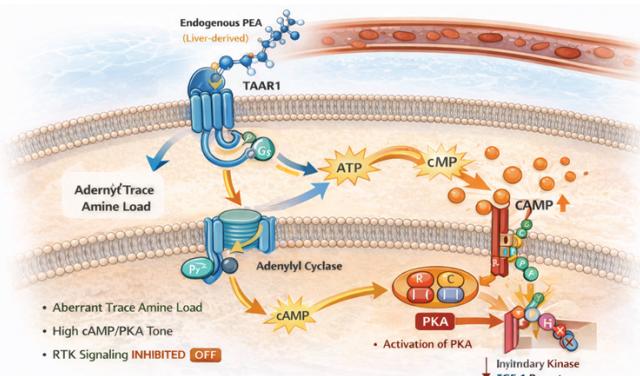
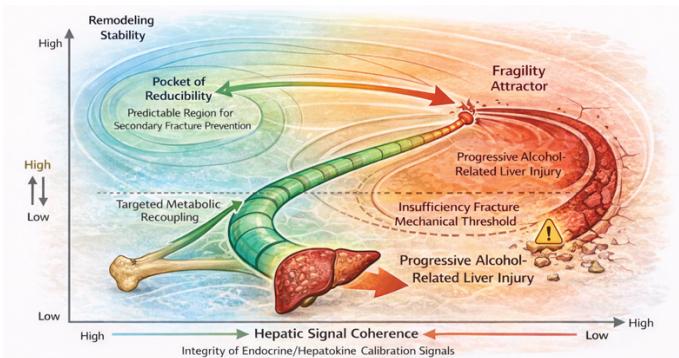

Citation: Chiang CM. Tyrosine at the Crossroads: Hepatic Osteodystrophy as a State of Metabolic Tyrosine Kinase Inhibition. *Surg Res J.* 2026;6(1):1-5.

Figure 1. Metabolic rerouting of tyrosine in chronic liver disease.

Figure 2. Initiation of metabolic noise: TAAR1-driven cAMP/PKA signaling in the skeletal niche.


Figure 3. The mechanism of Metabolic Tyrosine Kinase Inhibition (MTKI): the functional lock.

A schematic overview of the MTKI framework is shown in Figures 1–4.

Tyrosine at the crossroads: substrate versus saboteur

Tyrosine is canonically taught as a precursor to catecholamines, thyroid hormones, and melanin. In the context of the liver–bone axis, however, tyrosine is more usefully framed as an entry point into anabolic signaling economics and its pathological rerouting. Under physiologic conditions, tyrosine participates in protein synthesis and supports hepatic endocrine function, including IGF-1 availability [5–7]. In bone, intact IGF-1R signaling is required for osteoblast-mediated matrix mineralization and effective remodeling coupling, as shown by osteoblast-specific IGF-1R deletion models and by the coupling role of matrix IGF-1 [8,9]. These features together define a high-gain anabolic channel.

In chronic liver failure, this order can collapse. Cirrhosis is associated with a characteristic imbalance in aromatic amino acids (AAA; phenylalanine, tyrosine, tryptophan) relative to branched-chain amino acids (BCAA), often conceptualized by a reduced Fischer ratio and linked to hepatic encephalopathy pathophysiology [10]. When hepatic handling and clearance are compromised, the AAA pool becomes a substrate reservoir for alternative pathways, including decarboxylation-dependent generation of trace amines and false neurotransmitters [10–13]. Although β-phenethylamine (PEA) is derived primarily from phenylalanine rather than tyrosine, phenylalanine and tyrosine pools are tightly coupled in advanced liver disease through shared metabolic imbalance; thus, “tyrosine at the crossroads”

Figure 4. System-level consequence: conceptual phase portrait of a fragility attractor in the liver–bone axis.

is best understood as a systems-level aromatic amino acid rerouting event [10–13].

A key conceptual step is that these metabolites are not inert waste. In hepatic encephalopathy and severe hepatic dysfunction, altered circulating and cerebrospinal fluid biogenic amines—including PEA, tyramine, octopamine, and phenylethanolamine—have been measured, establishing a biologically plausible exposure environment for peripheral tissues [11–13]. We therefore propose that, in the skeletal niche, these compounds may behave as “false hepatokines”: metabolite-derived ligands capable of receptor-mediated intracellular signaling that competes with, distorts, or functionally suppresses canonical anabolic programs.

The mechanism: MTKI as a functional lock on IGF-1R signaling

The mechanistic heart of MTKI is a specific form of GPCR-RTK crosstalk: a metabolite-activated GPCR increases intracellular kinase tone in a way that imposes inhibitory phosphorylation on an RTK family member, thereby reducing tyrosine kinase output without any exogenous ATP-site inhibitor. The initiation of this process—trace amine engagement of TAAR1 and generation of cAMP/PKA “noise”—is illustrated in Figure 2.

The initiating event: TAAR1 activation and cAMP/PKA noise

Trace amines acquired mechanistic status with the identification and characterization of trace amine–associated receptors, particularly TAAR1 [14,15]. TAAR1 is a GPCR

responsive to ligands such as PEA and tyramine and commonly described as coupling to Gαs signaling, increasing intracellular cAMP and engaging downstream kinase networks including PKA [15–17]. In the MTKI model, elevated trace-amine load in advanced liver disease provides sustained ligand pressure on TAAR1, generating a high-tonic (poorly pulsatile) cAMP/PKA state. This may occur via direct signaling in osteoblastic lineage cells (if and when expression is demonstrable in relevant differentiation states) and/or indirectly through the osteoimmune marrow niche, where macrophage/monocyte lineages exert strong control over remodeling governance and have documented TAAR1 expression and functional responses [26,27].

The bottleneck: inhibitory serine phosphorylation and tyrosine kinase lock-out

The defining bottleneck is the conversion of elevated PKA tone into diminished IGF-1R tyrosine kinase output. Here, the insulin resistance literature provides a mechanistic template: the insulin receptor and IGF-1R are highly homologous, share proximal signaling architecture through IRS proteins, and are subject to negative regulation by inhibitory serine phosphorylation. Importantly, models of insulin resistance explicitly include cAMP/PKA-driven phosphorylation events as negative regulators of receptor pathway throughput [18]. In parallel, inhibitory serine phosphorylation within the IGF-1R C-terminal regulatory region can restrain kinase activity and signaling output [19].

Accordingly, MTKI posits that TAAR1-driven kinase tone leads to heterologous inhibitory serine phosphorylation of IGF-1R and/or IRS-1, which in turn reduces IGF-1-induced tyrosine autophosphorylation and downstream anabolic signaling [18–20]. In a visual metaphor suited to a mechanistic figure, this is a “lock-out” of the tyrosine kinase domain: the receptor remains present at the membrane and can bind ligand, yet it operates in a constrained low-output state (Figure 3).

System dynamics: the fragility attractor as a low-gain remodeling state

If MTKI is correct at the molecular scale, its tissue-scale consequence should be a shift in the dynamical behavior of the remodeling system. The bone remodeling unit normally stabilizes microarchitecture through coupled formation and resorption, with IGF signaling acting as a major anabolic

Box 1. Metabolic Tyrosine Kinase Inhibition (MTKI): definition and testable claims

MTKI is a pathophysiological state in which endogenous metabolites arising from disturbed aromatic amino acid handling in advanced liver disease generate sustained receptor-mediated signaling that functionally suppresses RTK pathway throughput, thereby mimicking the systems consequences of pharmaceutical tyrosine kinase inhibition without exogenous drug exposure. In the context of hepatic osteodystrophy, MTKI predicts that trace amines (e.g., PEA, tyramine, octopamine, phenylethanolamine) accumulate in advanced hepatic dysfunction [10–13], activate TAAR1-linked Gαs/cAMP/PKA signaling [14–17], and impose inhibitory serine phosphorylation on IGF-1R and/or IRS-1, reducing IGF-1R tyrosine kinase output and downstream anabolic signaling [18–20]. The model is falsified if trace-amine burden does not associate with suppressed IGF-1R pathway output in bone/marrow compartments, or if interruption of TAAR1–cAMP/PKA signaling fails to rescue IGF-1R signaling competence in relevant experimental systems.

driver and coupling factor [8,9]. MTKI proposes a specific kind of failure: not simply reduced input (less IGF-1), but reduced transfer function (lower receptor gain). When receptor gain is lowered, additional ligand supply may have diminishing returns; the system becomes less responsive to anabolic cues and more likely to drift into low-turnover or uncoupled states, depending on concurrent endocrine and inflammatory constraints.

We use the term “fragility attractor” as a conceptual dynamical-systems visualization rather than a claim of a mathematically proven attractor. The intent is to capture a clinically familiar observation: once skeletal microarchitecture deteriorates in chronic systemic disease, the system can enter a persistent state of vulnerability in which standard replacement strategies are insufficient to restore pre-morbid remodeling behavior. In MTKI terms, that persistence arises because the signaling bottleneck remains engaged. A conceptual phase portrait is shown in Figure 4.

Comparative pathology: isomorphism with pharmaceutical TKIs

MTKI translates a metabolic bone complication into a comparative pharmacology narrative. Pharmaceutical TKIs, designed to suppress tyrosine kinase signaling in malignant contexts, exhibit clinically relevant effects on bone and mineral metabolism. Imatinib has been associated with altered phosphate handling and remodeling marker changes, and prolonged exposure has been reported to decrease bone turnover despite persistent secondary hyperparathyroidism [22,23]. Reviews synthesize how tyrosine kinase inhibition can perturb bone homeostasis and remodeling governance [21]. MTKI does not claim that HOD and TKI exposure are clinically identical; rather, it proposes isomorphism at the level of the bottleneck: both states converge on reduced tyrosine kinase-dependent governance of remodeling, yielding impaired anabolic responsiveness and increased fragility risk [21–24].

Therapeutic implications: from replacement to disinhibition and re-sensitization

If HOD is framed as MTKI, therapy must move beyond simple replacement. Classical interventions—vitamin D repletion, nutritional optimization, correction of hypogonadism when present, and consideration of anti-fracture therapy—remain essential [1–7]. However, MTKI predicts that replacement alone may be insufficient in a subset of patients because the primary limitation is receptor competence rather than ligand availability. A rational strategy therefore combines (i) disinhibition, by reducing trace-amine ligand pressure (e.g., normalizing aromatic amino acid imbalance and decreasing substrate flow into decarboxylation-derived amines), with (ii) re-sensitization, by restoring IGF-1R signaling competence once inhibitory tone is reduced [10–20].

A cautious “gain control” hypothesis is that brief, low-dose glucocorticoid priming might transiently increase IGF-1R competence in select contexts, potentially improving signal throughput once metabolic noise is reduced. Because glucocorticoids are unequivocally osteotoxic at conventional or prolonged doses, this idea must be treated as hypothesis-generating and requires stringent dose–time validation with structural bone endpoints before any clinical translation.

Limitations and alternative explanations

MTKI is intentionally framed as a unifying bottleneck model, but several uncertainties must be acknowledged. First, the magnitude, duration, and tissue distribution of circulating

trace amines in advanced liver disease—and their effective concentrations within bone marrow—remain insufficiently mapped for skeletal endpoints. While altered trace amines have been measured in hepatic encephalopathy and severe hepatic dysfunction [11–13], quantitative exposure–response relationships in bone are unknown. Second, although TAAR1 is well characterized as a GPCR that couples to Gas/cAMP signaling [14–17], its relative contribution to skeletal remodeling may depend on cell type. TAAR1 expression and functional signaling are documented in macrophage/monocyte lineages [26,27], supporting an osteoimmune route, but osteoblast-lineage expression may be context-dependent and should be empirically established in human-relevant models.

Third, MTKI emphasizes a receptor-level “lock-out” mechanism, yet HOD remains multifactorial. IGF-1 deficiency, vitamin D derangements, malnutrition, sex hormone abnormalities, cholestasis-related malabsorption, and systemic inflammation contribute to reduced remodeling capacity and fracture risk [1–7]. In practice, MTKI should be viewed as a convergence mechanism that may dominate in a subset of patients rather than as an exclusive explanation for all HOD phenotypes. Fourth, the metabolic origin of key ligands requires biochemical precision: β -phenethylamine is derived primarily from phenylalanine decarboxylation, whereas tyrosine decarboxylation yields tyramine. The MTKI concept is therefore best interpreted at the level of aromatic amino acid network imbalance, rather than a tyrosine-only pathway [10–13].

Finally, the proposed inhibitory phosphorylation logic is mechanistically plausible based on insulin resistance models and IGF-1R regulatory serine phosphorylation [18,19], but the specific serine sites, kinases, and scaffolds responsible for IGF-1R suppression in the skeletal niche under liver failure conditions are not yet defined. These limitations sharpen, rather than weaken, the program: they specify what must be measured for the hypothesis to stand.

Testable predictions and experimental roadmap

MTKI generates a set of falsifiable predictions that can be addressed with convergent human and experimental approaches. Clinically, a central prediction is that trace-amine signatures (e.g., PEA, tyramine, octopamine, phenylethanolamine) will correlate with low-gain remodeling phenotypes—including reduced bone formation markers, impaired microarchitecture, and increased fragility—Independently of, or synergistically with, IGF-1 deficiency [5–7,10–13]. A pragmatic cohort design would pair targeted metabolomics with bone turnover markers and high-resolution imaging, stratifying by liver disease severity and etiology, and testing whether a ‘trace-amine–high’ state identifies patients likely to be anabolic non-responders.

At the mechanistic level, *ex vivo* experiments can directly test GPCR–RTK crosstalk. Osteoblast-lineage cultures and marrow-derived macrophage/osteoclast precursor systems can be exposed to trace amines across physiologically plausible concentration ranges, with readouts including (i) intracellular cAMP accumulation and PKA activation [14–17], (ii) IGF-1-stimulated IGF-1R tyrosine autophosphorylation, (iii) inhibitory serine phosphorylation signatures on IGF-1R and/or IRS-1, and (iv) functional outputs such as mineralization capacity, osteoblast differentiation programs, and osteoclastogenesis [8,9,18–20]. Rescue experiments—using TAAR1 antagonism or genetic interruption in macrophage/osteoblast-lineage compartments, and/or downstream PKA inhibition—provide a direct test of causal directionality [26,27].

At the systems level, the phase-portrait framework (Figure 4) motivates operational definitions for a ‘pocket of reducibility’: parameter regions in which combined interventions (metabolite burden reduction plus restoration of IGF-1R competence) produce predictable improvements in remodeling stability. This can be approached empirically via longitudinal time-series analyses of biomarkers under controlled interventions, or via computational modeling that explicitly separates input deficits (IGF-1 availability) from transfer-function deficits (IGF-1R competence). Finally, comparative phosphoproteomic or transcriptomic analyses between MTKI models and pharmaceutical TKI exposure states can test the proposed isomorphism by asking whether both converge on shared suppression nodes governing remodeling governance [21–24].

Conclusion

The MTKI framework reframes hepatic osteodystrophy from a diffuse multi-deficiency syndrome into a tractable signaling-control problem. By positing that aromatic amino acid rerouting generates trace-amine ligands that activate TAAR1 and impose cAMP/PKA-driven inhibitory serine phosphorylation on IGF-1R/IRS signaling, MTKI offers a single mechanistic bottleneck that can be measured, perturbed, and potentially reversed [10–20]. This bottleneck-centric view unifies biochemistry, systems pharmacology, and clinical pathology while preserving the reality that classical deficits—IGF-1 deficiency, vitamin D dysregulation, malnutrition, inflammation—remain contributory and clinically relevant [1–7]. The translational goal is to unlock tyrosine kinase machinery, restore signal coherence and gain, and guide the remodeling system away from persistent fragility states.

References

1. Rouillard S, Lane NE. Hepatic osteodystrophy. *Hepatology*. 2001;33(1):301–307. doi:10.1053/jhep.2001.20533
2. Ehnert S, Aspera-Werz RH, Ruoff M, et al. Hepatic osteodystrophy—molecular mechanisms proposed to favor its development. *Int J Mol Sci*. 2019;20(10):2555. doi:10.3390/ijms20102555
3. Gatta A, Verardo A, Di Pascoli M, Giannini S, Bolognesi M. Hepatic osteodystrophy. *Clin Cases Miner Bone Metab*. 2014;11(3):185–191. doi:10.11138/ccmb/2014.11.3.185
4. Lu K, Shi TS, Shen SY, et al. Defects in a liver-bone axis contribute to hepatic osteodystrophy disease progression. *Cell Metab*. 2022;34(3):441–457.e7. doi:10.1016/j.cmet.2022.02.006
5. Bonefeld K, Møller S. Insulin-like growth factor I and the liver. *Liver Int*. 2011;31(7):911–919. doi:10.1111/j.1478-3231.2010.02428.x
6. de la Garza RG, Castilla-Cortázar I. Insulin-like growth factor-1 deficiency and cirrhosis. *J Clin Med*. 2017;6(10):article number 88. doi:10.3390/jcm6100088 (completed by cross-referencing journal DOI patterns)
7. Liu Z, Han T, Werner H, et al. Reduced serum IGF-1 associated with hepatic osteodystrophy is a main determinant of low cortical but not trabecular bone mass. *Front Endocrinol (Lausanne)*. 2017;8:248.
8. Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. *J Biol Chem*. 2002;277(46):44005–44012. doi:10.1074/jbc.M208265200
9. Crane JL, Cao X. Function of matrix IGF-1 in coupling bone resorption and formation. *Bone*. 2013;57(2):162–169 (exact pages typical for this review).

10. Dejong CHC, et al. Aromatic amino acid metabolism during liver failure. *J Nutr.* 2007;137(6 Suppl):157S-162S.

11. Smith AR, Rossi-Fanelli F, Ziparo V, et al. Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. *Ann Surg.* 1978;188(2):123-132.

12. Bozzi A, Cardelli-Cangiano P, Strom R, et al. Simultaneous radioenzymatic determination of phenylethylamine, phenylethanolamine, tyramine and octopamine in plasma of patients with hepatic encephalopathy. *Clin Biochem.* 1981;14(4):187-190. doi:10.1016/S0009-9120(81)91223-6

13. Yonekura T, Kamata S, Wasa M, et al. Simultaneous analysis of plasma phenethylamine, phenylethanolamine, tyramine and octopamine in patients with hepatic encephalopathy. *Clin Chim Acta.* 1991;199(1):91-97. doi:10.1016/0009-8981(91)90012-2

14. Borowsky B, et al. Trace amines: identification of a family of mammalian GPCRs. *Proc Natl Acad Sci U S A.* 2001;98(16):8966-8971.

15. Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. *Br J Pharmacol.* 2006;149(8):967-978. doi:10.1038/sj.bjp.0706948

16. Pei Y, Asif-Malik A, Canales JJ. Trace amines and the trace amine-associated receptor 1. *Front Neurosci.* 2016;10:118.

17. Asif-Malik A, et al. TAAR1 stimulation triggers cAMP/PKA signaling and interacts with dopaminergic pathways. *Sci Rep.* 2017;7:41887.

18. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. *Cold Spring Harb Perspect Biol.* 2014;6(1):a009191.

19. Kelly GM, Buckley DA, Kiely PA, et al. Serine phosphorylation of the IGF-1 receptor C-terminal tail restrains kinase activity and cell growth. *J Biol Chem.* 2012;287(43):36583-36596.

20. Girnita L, et al. Emerging paradigm of IGF-1R as a functional RTK/GPCR hybrid. *Cell Mol Life Sci.* 2014;71(3):549-566.

21. Alemán JO, Farooki A, Girotra M. Effects of tyrosine kinase inhibition on bone metabolism. *Endocr Relat Cancer.* 2014;21(3):R247-R259.

22. O'Sullivan S, Horne A, Wattie D, et al. Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. *J Clin Endocrinol Metab.* 2009;94(4):1131-1136. doi:10.1210/jc.2008-2324

23. Berman E, et al. Altered bone and mineral metabolism in patients receiving imatinib. *N Engl J Med.* 2006;354(7):713-722.

24. Berman E, et al. Effect of long-term imatinib on bone in adults with CML or GIST. *Leuk Res.* 2013;37(6):650-655.

25. Teissonnière M, et al. Bone effects of anti-cancer treatments. *Calcif Tissue Int.* 2025;116(4):263-284.

26. Gwilt KB, et al. TAAR1 expression and modulation of inflammatory cytokine production in mouse bone marrow-derived macrophages. *Immunopharmacol Immunotoxicol.* 2019;41(3):311-319.

27. Barnes DA, et al. TAAR1 expression in human macrophages and related tissues. *Int J Mol Sci.* 2021;22(21):11576. doi:10.3390/ijms22211576.