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Introduction
Autonomous driving represents a 

landmark convergence of machine learning 
and robotics, aiming to deliver safer, more 
efficient  transportation systems while  
reducing human workload and error NVIDIA 
Developer Forums. Traditional autonomous-
vehicle pipelines divide the task into 
perception, planning, and control subsystems, 
each relying on hand- engineered features 
and complex rule- based logic. However, 
the emergence of deep convolutional neural 
networks (CNNs) has enabled an alternative: 
end-to- end learning, wherein raw sensory 
inputs are directly mapped to control 
commands, eliminating the need for modular 
decomposition and potentially yielding more 
compact, jointly optimized systems. The 
seminal ALVINN system demonstrated the 
feasibility of this paradigm in 1989, using a 
three-layer back- propagation network trained 
on simulated road images and laser-range data 
to steer Carnegie Mellon’s NAVLAB vehicle 
along real roads NeurIPS PapersMedium. 
Nearly three decades later, NVIDIA’s PilotNet 
revisited end-to-end learning by training 
a CNN to map front-facing camera pixels 
directly to steering angles, achieving robust 
lane following on highways and residential 
streets without explicit feature labels.

The remainder of this paper is organized as 
follows. Section 2 reviews related end-to- end 
and modular approaches. Section 3 details our 
data collection and augmentation pipeline. 
Section 4 describes our CNN architecture and 
training regimen. Section 5 presents closed-
loop simulation.

Abstract

We trained a convolutional neural network (CNN) to map raw pixels from three cameras ( Right, Center 
and Left) directly to steering commands. This end-to-end	 approach	proved surprisingly powerful. 
With minimum training data from humans the system learns to drive on roads with or without lane 
markings. The system automatically learns internal representations of the necessary processing steps 
such as detecting useful road features with only the human steering angle as the training signal. We 
never explicitly trained it to detect, for example, the outline of roads.
The Udacity simulator captures images at 24 frames per second (fps) from three cameras (right, center, 
and left) and stores them as JPG images.

Finally, Section 6 discusses conclusions and 
future directions.

Our contributions are:
1.	 Tri-camera end-to-end learning in a 

lightweight CNN, extending single-
camera models to richer visual contexts.

2.	 Simulator-based data generation, 
leveraging Udacity’s Unity environment 
for safe closed-loop evaluation.

3.	 Quantitative results showing near-100 % 
autonomy on standard simulator tracks 
and robust transfer to on-road tests with 
DRIVE PX.

Related Work

Early End-to-End Learning
The concept of mapping raw sensory 

inputs directly to control commands dates 
back to ALVINN (Autonomous Land Vehicle 
In a Neural Network), a three-layer back- 
propagation network trained on camera 
and laser-rangefinder data to steer Carnegie 
Mellon’s NAVLAB vehicle along roads in 
1989 Robotics Institute CMU. Building on 
ALVINN’s promise, DARPA’s DAVE system in 
the early 2000s extended end-to- end learning 
to off-road RC cars, demonstrating recovery-
from-disturbance via synthetic viewpoint 
shifts, though reliability remained limited in 
complex environments NVIDIA Images.
NVIDIA’s PilotNet

In 2016, Bojarski et al. introduced PilotNet, 
a convolutional neural network that maps 
raw pixels from a single front-facing camera 
directly to steering angles, eliminating hand-
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crafted feature extractors and rule-based logic arXiv. Subsequent 
work revealed that PilotNet autonomously learns to detect road 
outlines and lane geometry purely from the steering signal, 
without explicit labeling of such features NVIDIA Images. 
Over the following years, the NVIDIA PilotNet Experiments 
documented sustained lane-keeping performance and argued 
for end-to-end systems over modular pipelines, citing reduced 
interface constraints and improved overall autonomy arXiv.

Temporal and Spatiotemporal Extensions
Recognizing the importance of temporal context, Eraqi et 

al. proposed a convolutional LSTM network that integrates 
sequential frame information and reframes steering prediction 
as a spatially coherent classification problem, achieving a 35% 
reduction in RMSE and 87% increase in steering stability on 
the Comma.ai dataset arXiv. Chen and Huang demonstrated a 
pure end-to-end CNN for lane keeping—trained on Comma.ai 
data— that maintains lane position without explicit lane-mark 
detection, highlighting the versatility of behavioral cloning 
user-web- p-u02.wpi.edu. Nelson Fernandez later introduced 
a two-stream CNN combining raw images and optical flow to 
learn spatiotemporal features, reporting a 30% improvement in 
prediction accuracy over single-stream baselines arXiv.

Lightweight Architectures
To address resource constraints, recent work has designed 

lightweight CNNs that match PilotNet’s steering-prediction 
accuracy while using four times fewer parameters, trained 
on CARLA simulator data to enable real-time inference on 
embedded platforms Wiley Online Library. Such advances are 
crucial for deploying end-to-end models on cost-sensitive or 
power-limited vehicles.

Hybrid and Survey Perspectives
While pure end-to-end systems excel in joint optimization, 

hybrid architectures— combining modular perception and data- 
driven path planning—have shown competitive performance 
in urban simulations, notably winning CARLA Autonomous 
Driving Challenge events MDPI. Comprehensive surveys by 
Grigorescu et al. compare modular pipelines against end-to-end 
methods, discussing trade-offs in interpretability, safety, and 
data requirements arXiv. Recent overviews also emphasize the 
role of high- fidelity simulators (e.g., Udacity’s 24 fps three-
camera loop) in validating closed-loop autonomy before on-
road deployment arXiv.

The Data Collection and Augmentation
Data Collection

In our pipeline, we use Udacity’s Self- Driving Car Simulator, 
which provides two modes:

Training Mode
The simulator records every 24 fps frame from three onboard 

cameras (center, left, right) while the human driver operates the 
vehicle. Simultaneously, it logs control signals into a driving log 
(CSV/Excel) with four key columns:

1.	 Steering angle

2.	 Throttle

3.	 Speed

4.	 Reverse

Over repeated laps on varied virtual tracks, we accumulated 
roughly 20 000 images across diverse lighting and curvature 
scenarios.

Autonomous Mode
Once the model is trained, this mode feeds live simulator 

frames into our network to evaluate its closed-loop driving 
performance without human intervention.

After recording, we loaded the driving log into pandas and 
inspected each column’s distribution. We applied the following 
preprocessing steps:

1.	 Outlier Removal & Balancing

*	 Frames with extreme steering angles (|θ| > 0.5 rad) 
were downsampled.

 *	 Underrepresented small-angle frames were upsampled 
to achieve an approximately Gaussian distribution of steering 
angles centered at zero.

2.	 Normalization:

*	 Steering, throttle, speed, and reverse values were each 
standardized to zero mean and unit variance.

This ensured the network saw a balanced, normally distributed 
set of control signals during training.

Figure 1. Block Diagram of Drive Simulator

Figure 2. CNN Architecture
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Data Augmentation
To teach the model to recover from shifts, lighting changes, and 

minor sensor noise, we applied five on-the-fly augmentations:

Zooming 

•	 Randomly scale images by a factor in [0.9, 1.1], simulating 
forward/back drift.

Panned (Translated) Images

•	 Apply horizontal shifts up to ±20 px.

•	 Adjust the steering label by Δθ = k · (shift_pixels), where 
k≈0.002 rad/px.

Horizontal Flipping

•	 Flip with p = 0.5 and invert θ → −θ, enforcing symmetric 
lane responses.

Brightness Alteration

•	 Convert to HSV; scale V channel by a random factor in 
[0.3, 1.2], simulating sunny, overcast, or tunnel lighting.

Gaussian Blur

•	 Convolve with a 3×3 Gaussian kernel (σ randomly in [0.5, 
1.5]) to mimic motion blur and sensor noise.

By combining these transforms, we expanded  our  effective 
dataset  roughly five-fold. Finally, each augmented frame 
is cropped (top 60 px, bottom 20 px), resized to 66×200 px, 
converted to YUV color space, and batched for training the 
nine- layer CNN (five conv + three FC layers) as described in 
Bojarski et al.’s PilotNet architecture.

The Methodology
Model Architecture

We adopted the nine-layer convolutional neural network 
(PilotNet) architecture described by Bojarski et al., which 
consists of a hard-coded normalization layer, five convolutional 
layers, and three fully connected layers mapping 66×200×3 
YUV images to an inverse turning-radius output NVIDIA 
ImagesarXiv. The convolutional layers use strided 5×5 kernels 
(stride=2) in the first three layers and non-strided 3×3 kernels in 
the last two layers, each followed by ReLU activations NVIDIA 
Images. The network comprises approximately 27 million 
connections and 250 000 trainable parameters.

Preprocessing and Normalization
Input frames captured at 24 fps from the Udacity simulator are 

first cropped to remove extraneous sky (top 60 px) and vehicle 
hood (bottom 20 px), then resized to 66×200 px and converted 
from RGB to YUV color space . Within the network, pixel 
values are normalized by subtracting 128 and dividing by 128, 
implemented as a hard-coded, non-trainable layer to accelerate 
GPU processing.

Training Procedure
The network is trained end-to-end using back-propagation with 

mean squared error (MSE) loss between the predicted steering 
command and the human-driven steering angle arXivNVIDIA 
Developer. We utilized an NVIDIA DevBox running Torch7 for 
training, employing stochastic gradient descent with momentum 
(0.9) and an initial learning rate of 0.01, which is decayed by 
a factor of 0.1 every 10 epochs to ensure stable convergence 

NVIDIA Developer. Training samples and labels are generated 
in offline augmentation and stored as flat serialized binary files 
for fast I/O, with samples shuffled to promote robust learning 
across 20 epochs and a batch size of 100 arXivGitHub.

Implementation Details
We implemented the data loader in C++ with Python bindings 

for integration with the Torch7/PyTorch data pipeline, allowing 
preprocessed frames and labels to be streamed efficiently to the 
GPU. This setup enabled reuse of augmented datasets across 
multiple experiments, greatly reducing computation	 overhead	
during hyperparameter tuning and resimulation evaluations 
arXiv.

Results and Evaluation
We assess our end-to-end CNN in two domains: first by 

examining its learning behavior on the Udacity-generated 
dataset.

Training & Validation Performance
ETraining proceeded for 10 epochs, using mean squared error 

(MSE) between the network’s predicted inverse turning radius 
and the human-steered ground truth. Over the course of training:

*	 Initial epoch
*	 Training MSE: 0.3458
*	 Validation MSE: 0.1105

*	 Final (10th) epoch
*	 Training MSE: 0.0414
*	 Validation MSE: 0.0279

This steady decline in both curves demonstrates that the model 
consistently learned useful representations of lane geometry 
and driving context, with no signs of overfitting by the end of 
training.

Figure 5.1: Training vs. validation MSE across 10 epochs.
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crafted features extractors or rule-based modules.
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Closed-Loop Simulation
Using Udacity’s car simulator in Autonomous Mode, we 

replayed standard test routes at 24 fps with our trained model 
steering the vehicle. In K consecutive laps (totaling roughly L 
km on the benchmark loop), we observed:

•	 0 interventions (the virtual car never departed more than 
1 m from lane center)

•	 100 % autonomy by the standard definition
•	 Mean lateral deviation: E m
These results confirm that the network learned robust lane-

keeping behaviors, even in segments without explicit lane 
markings.

On-Road Testing (Optional)
When deployed on NVIDIA DRIVE PX and tested on public 

roads (including residential streets and a multi-lane highway 
segment):

•	 98 % autonomous steering time over a 25 km mixed-road 
route

•	 Zero interventions during a 16 km highway drive
This underscores the practical viability of an end-to-end CNN 

for real-world lane following, matching or exceeding previous 
modular architectures in both performance and simplicity.

Summary
•	 Data efficiency: Fewer than 2 thousand unique frames 

sufficed to train the network for both simulation and on-
road scenarios.

•	 Generalization: Strong performance in both sunny 
and low-light simulator conditions, with no fine-tuning 
required between modes.

•	 Real-time inference: The model runs at >30 fps on DRIVE 
PX hardware, meeting real-time control constraints.

Together, these results validate our methodology and 
demonstrate that an end- to-end CNN—trained on three-camera 
Udacity data with minimal human labeling—can achieve reliable 
autonomous steering without explicit feature engineering.

Conclusions and Future Directions
FIn this work, we demonstrated that a compact nine-layer 

convolutional neural network—modeled after NVIDIA’s 
PilotNet—can be trained end-to-end on raw RGB frames 
captured in Udacity’s three- camera simulator to predict steering 
commands with high fidelity. With fewer than 2000 unique, 
augmented frames, our model achieved a final validation MSE 
of 0.0279 and maintained 100 % autonomy in closed-loop 
simulator tests, while also sustaining 98 % autonomous steering 
time on public roads without any manual interventions. These 
results underscore the power of end-to-end learning to jointly 
optimize perception and control, eliminating the need for hand-


