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Abstract

Anomaly detection is crucial for maintaining network security, and this study compares the effectiveness
of traditional Autoencoders (AE) and Variational Autoencoders (VAE) for detecting anomalies in
network traffic data. Leveraging their respective architectures, AEs and VAEs are evaluated based on
key performance metrics, including accuracy, precision, recall, Fl-score, and AUC-ROC. The results
reveal that VAEs significantly outperform AEs across all metrics, demonstrating higher accuracy (94.0%
vs. 92.5%), precision (92.5% vs. 91.0%), recall (96.0% vs. 94.0%), and Fl-score (94.1% vs. 92.5%).
Additionally, VAEs exhibit a superior AUC-ROC of 95.0% compared to 94.2% for AEs. These findings
underscore the VAE's enhanced capability in capturing complex data patterns and distinguishing
between normal and anomalous behaviors more effectively. This study provides valuable insights into
the advantages of probabilistic modeling in improving anomaly detection performance, offering a more

robust solution for network security applications.

Introduction
Networksecurityisacriticalaspectofmodern
computing environments, aimed at protecting
data integrity, confidentiality, and availability
from malicious activities and unauthorized
access. The increasing sophistication of cyber-
attacks and the proliferation of networked
systems make robust network security
measures indispensable. Anomaly detection
plays a pivotal role in network security by
identifying deviations from normal behavior
that could indicate potential threats. Common
threats include malware, phishing attacks,
distributed denial-of-service (DDoS) attacks,
and unauthorized access. These threats can
lead to severe consequences such as data
breaches, service outages, and financial
losses. The challenge lies in the ever-evolving
nature of these threats, which often render
traditional security measures insufficient. As
network traffic becomes more complex and
voluminous, the ability to detect and respond
to anomalies in real-time is crucial for
maintaining a secure network environment.

Overview of Anomaly Detection

Anomaly detection is a technique used to
identify unusual patterns or outliers in data
that do not conform to expected behavior.
In the context of network security, the
primary objective of anomaly detection is
to identify potential security incidents by
spotting deviations from normal network

traffic patterns. The detection process involves
analyzing network data to establish a baseline
of normal behavior and then monitoring for
deviations that could signify an attack or
compromise. Typical methods for anomaly
detection include statistical approaches,
machine learning techniques, and rule-based
systems. Statistical methods rely on predefined
thresholds and statistical properties to detect
anomalies, while machine learning techniques
leverage algorithms to learn from historical
data and adapt to new patterns. Rule-based
systems use expert knowledge to define specific
rules for identifying anomalies. Each method
has its strengths and limitations, and selecting
the appropriate approach depends on the nature
of the network traffic and the specific security
objectives.

Introduction to Autoencoders and

Variational Autoencoders

Autoencoders are a type of neural network
designed for unsupervised learning, particularly
suited for tasks involving data reconstruction
and dimensionality reduction. The basic
architecture of an autoencoder consists of
an encoder that compresses the input data
into a lower-dimensional latent space and a
decoder that reconstructs the original data
from this latent representation. Autoencoders
are valuable for anomaly detection as they
can learn to model normal network behavior
and identify deviations as anomalies based on
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reconstruction errors.

Variational Autoencoders (VAEs) extend the concept of
traditional autoencoders by incorporating probabilistic elements
into the learning process. Unlike standard autoencoders
that use deterministic encoding and decoding, VAEs use a
probabilistic approach to model the distribution of the latent
space. This allows VAEs to generate more robust and realistic
representations of data, making them particularly useful for
capturing complex patterns and uncertainties in the data. VAEs
are equipped with a loss function that combines reconstruction
loss with a regularization term, which helps in learning a more
structured latent space. This characteristic enhances their ability
to detect anomalies by improving the model's capacity to handle
variations in data and identify outliers with higher accuracy.

Literature survey

Existing Work on Anomaly Detection

Traditional methods of anomaly detection in network security
primarily include statistical techniques, rule-based systems,
and clustering approaches. Statistical methods, such as the use
of z-scores or threshold-based techniques, rely on defining a
baseline of normal behavior and flagging deviations that exceed
predefined thresholds as anomalies. These methods are often
straightforward and computationally efficient but may struggle
with high-dimensional data and adapt poorly to evolving attack
patterns. Rule-based systems leverage expert knowledge to
define specific rules for identifying anomalies, such as unusual
patterns of network traffic or deviations from expected user
behavior. While these systems can be highly effective for
known attack patterns, they lack the flexibility to adapt to new
or unknown threats. Clustering techniques, such as k-means or
DBSCAN, group similar data points and identify outliers as
anomalies. While these methods can capture complex patterns
and adapt to changing data distributions, they may require
extensive parameter tuning and can be sensitive to noise.

Despite their utility, traditional methods have several
limitations. They often rely on static thresholds or predefined
rules, making them less effective at handling dynamic and
evolving network environments. Additionally, these methods
may have difficulty scaling to large volumes of data and may
struggle to detect novel or previously unseen types of attacks.
The increasing complexity and volume of network traffic
necessitate more adaptive and scalable approaches to anomaly
detection, prompting a shift towards more advanced techniques,
such as machine learning-based methods.

Autoencoders in Anomaly Detection

Autoencoders have emerged as a powerful tool for anomaly
detection due to their ability to learn compact representations
of data and detect deviations from normal patterns. In network
security, autoencoders are used to model the normal behavior
of network traffic by encoding it into a lower-dimensional
space and reconstructing it to match the original input. During
training, autoencoders learn to minimize reconstruction error,
effectively capturing the underlying structure of normal network
traffic. Anomalies are detected based on high reconstruction
errors, which indicate that the model struggled to accurately
reconstruct data that deviates significantly from what it has
learned as normal.

Research has demonstrated the efficacy of autoencoders
in various network security applications. For example,
autoencoders have been used to detect unusual patterns in
network traffic that could signify malware infections or
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unauthorized access attempts. Their ability to handle high-
dimensional data and learn complex patterns makes them
well-suited for modern network environments. However, while
autoencoders offer promising results, they also have limitations.
They can be sensitive to the choice of network architecture and
hyperparameters, and their performance may degrade when the
distribution of normal behavior changes over time.

Variational Autoencoders in Anomaly Detection

Variational Autoencoders (VAEs) introduce a probabilistic
framework to the traditional autoencoder model, enhancing
its capability for anomaly detection. VAEs learn a distribution
over the latent space, allowing them to generate more robust
representations of data. This probabilistic approach enables
VAEs to model uncertainty and capture more complex data
patterns, making them particularly effective for detecting
anomalies in diverse and dynamic network environments.

Recent advancements in VAEs have led to improvements
in their performance for anomaly detection tasks. Innovations
such as incorporating domain-specific knowledge into the
VAE architecture or using advanced regularization techniques
have further enhanced their ability to handle complex and
high-dimensional data. For instance, VAEs with hierarchical
structures or attention mechanisms have shown promise in
improving anomaly detection accuracy by better capturing
intricate relationships within the data.

Applications of VAEs in network security have demonstrated
their effectiveness in identifying novel and subtle anomalies that
traditional methods might miss. For example, VAEs have been
used to detect sophisticated cyber-attacks by learning intricate
patterns in network traffic and identifying deviations that
deviate from learned distributions. Despite their advantages,
VAEs also face challenges, such as the need for careful tuning
of probabilistic parameters and potential computational
complexity.

Methodology

Autoencoder Architecture

Autoencoders are a type of neural network designed for
unsupervised learning, particularly for tasks involving data
reconstruction and dimensionality reduction. The architecture of
an autoencoder consists of two main components: the encoder
and the decoder.

The encoder is responsible for compressing the input data
into a lower-dimensional representation, known as the latent
space. This component typically consists of one or more layers
of neural networks that gradually reduce the dimensionality
of the input data. For instance, in a feedforward autoencoder,
the encoder may start with a dense layer followed by several
hidden layers with decreasing numbers of neurons. The final
layer of the encoder, known as the bottleneck or latent layer,
represents the compressed version of the input data. The goal of
the encoder is to capture the most important features of the input
data while discarding less relevant information.

The decoder then reconstructs the original data from this
latent representation. It mirrors the structure of the encoder
but in reverse, using layers that progressively increase the
dimensionality of the latent space representation back to the
original data dimensions. The decoder's role is to reconstruct
the input data as accurately as possible from the compressed
representation. Typically, the decoder comprises dense layers or
transposed convolutional layers, depending on the type of data
(e.g., images or tabular data). The reconstruction error, which

Page 2 of 4



Cherla Lavanya Kumari, et al. Global Journal of Engineering Innovations and Interdisciplinary Research. 2026;6(2):147

measures the difference between the original input and the
reconstructed output, serves as the primary metric for training
the autoencoder.

Variational Autoencoder Architecture

Variational Autoencoders (VAEs) extend the concept of
traditional autoencoders by incorporating a probabilistic
approach to the encoding and decoding processes. The VAE
architecture includes additional components that enhance its
ability to model complex data distributions.

In a VAE, the encoder generates a probability distribution
over the latent space rather than a deterministic representation.
Specifically, it outputs parameters for a Gaussian distribution—
mean and variance—for each dimension of the latent space.
These parameters define the distribution from which latent
variables are sampled. This probabilistic encoding allows VAEs
to capture a wider range of data variations and uncertainties.

The decoder in a VAE then reconstructs the input data from the
sampled latent variables. It uses the sampled latent variables to
generate the reconstruction, similar to traditional autoencoders
but with an added stochastic element. The decoder is trained to
maximize the likelihood of reconstructing the input data from
these sampled latent variables.

The reconstruction loss in VAEs is calculated as the difference
between the original data and the reconstructed output, similar
to traditional autoencoders. However, VAEs also include a
regularization term in their loss function, known as the Kullback-
Leibler (KL) divergence. This term measures the divergence
between the learned latent distribution and a prior distribution
(usually a standard Gaussian distribution). The KL divergence
encourages the latent space to follow a known distribution,
promoting smoother and more continuous representations. The
combination of reconstruction loss and KL divergence helps
VAEs to balance the accuracy of data reconstruction with the
quality of the latent space representation.

Dataset Description

The choice of dataset is crucial for evaluating the performance
of autoencoders and variational autoencoders in anomaly
detection. For network security applications, the dataset
typically consists of network traffic data that includes both
normal and anomalous activities.

A well-known dataset for such tasks is the KDD Cup 1999
dataset, which includes various network traffic data and labeled
anomalies such as denial-of-service attacks, probe attacks,
and remote-to-local attacks. Another dataset used frequently
is the NSL-KDD dataset, which is a refined version of the
original KDD Cup dataset, addressing some of its limitations
and providing a more balanced representation of attack types.
These datasets contain features related to network connections,
such as duration, protocol type, service, and various statistical
measures.

For evaluation, it is essential to ensure that the dataset includes
a representative sample of both normal behavior and a diverse
range of anomalous activities. Labeled anomalies provide a
clear benchmark for measuring detection performance, while a
mix of normal data ensures that the models learn to distinguish
between typical network behavior and potential threats.

Preprocessing and Feature Extraction

Preprocessing and feature extraction are critical steps in
preparing network traffic data for modeling with autoencoders
and VAEs.

Preprocessing involves cleaning and normalizing the data to
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make it suitable for training. This may include handling missing
values, removing irrelevant features, and scaling numerical
features to ensure uniformity. For network traffic data,
preprocessing steps might also involve encoding categorical
variables (such as protocol types) into numerical formats and
aggregating features to reduce dimensionality.

Feature extraction focuses on transforming raw data into
meaningful features that can enhance the performance of
anomaly detection models. For network traffic data, common
feature extraction techniques include statistical summaries
(e.g., mean, variance), time-based features (e.g., connection
duration, packet counts), and domain-specific metrics (e.g.,
connection rates, bytes per connection). Techniques such
as Principal Component Analysis (PCA) or t-Distributed
Stochastic Neighbor Embedding (t-SNE) can also be used
for dimensionality reduction, helping to capture the most
informative features while reducing noise and computational
complexity.

Implementation and results

Accuracy is a key performance metric, and the VAE achieved a
higher accuracy of 94.0% compared to the autoencoder’s 92.5%.
This suggests that the VAE is better at correctly identifying both
normal and anomalous instances within the dataset, providing a
more reliable detection system overall.

In terms of Precision, the VAE also shows an advantage with
a precision of 92.5%, surpassing the autoencoder’s 91.0%.
Higher precision in the VAE indicates that it is more effective at
minimizing false positives, meaning that fewer normal instances
are incorrectly classified as anomalies.

The Recall metric further illustrates the VAE’s superior
performance, with a recall of 96.0% compared to the
autoencoder’s 94.0%. This higher recall signifies that the VAE
is better at identifying actual anomalous instances, capturing a
greater proportion of true positives.

The F1-Score, which combines precision and recall into a
single metric, reflects similar findings. The VAE achieved an F1-
Score of 94.1%, slightly higher than the autoencoder’s 92.5%.
This improvement indicates that the VAE provides a more
balanced performance in terms of both precision and recall.

Table-1: Accuracy Comparison

Model Accuracy (%)
Autoencoder 92.5
VAE 94
Accuracy (%)

945

94
93.5

93

m Accuracy (%)

92.5

92
91.5

Autoencoder VAE

Fig-1: Graph for Accuracy comparison
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Table-2: Precision Comparison

Table-4: F1-Score Comparison

Model Precision (%) Model F1-Score (%)
Autoencoder 91 Autoencoder 92.5
VAE 92:5 VAE 94.1
Precision (%) F1-Score (%)
93 94.5
2.5 94
7] 93.5
915 . 93
M Precision (%) W F1-Score (%)
91 - 0.5
90.5 9 -
90 | 915 |
Autoencoder WAE Autoencoder VAE
Fig-2: Graph for Precision comparison Fig-4: Graph for F1-Score comparison
Table-3: Graph for Precision comparison to continuously improve the efficacy of anomaly detection
systems.
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Future work could explore further refinements in VAE
architectures and investigate their applicability across different
types of network traffic and emerging security threats, aiming
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