

Fuzzy-Based Decision Support Systems for Disaster Management in Smart Cities

Yatham Thirumalanayudu¹, Shaik Saidabi², Devireddy Mamatha³

¹Assistant Professor, Dept of CSE-Data Science, Guru Nanak Institutions Technical Campus. Hyderabad

²Assistant Professor, Department of CSE, Sphoorthy Engineering College, Nadergul, Hyderabad

³Department of CSE, Sphoorthy Engineering College, Nadergul, Hyderabad

Correspondence

Yatham Thirumalanayudu

Assistant Professor, Dept of CSE-Data Science, Guru Nanak Institutions Technical Campus. Hyderabad

- Received Date: 25 Sep 2025
- Accepted Date: 04 Jan 2026
- Publication Date: 06 Jan 2026

Abstract

In the context of smart cities, effective disaster management is paramount for ensuring public safety and resilience against natural calamities. This research presents a novel fuzzy-based decision support system (DSS) designed to enhance disaster response capabilities compared to traditional DSS models. By integrating real-time data from IoT sensors, social media, and meteorological forecasts, the fuzzy-based approach adeptly handles uncertainties and ambiguities inherent in disaster scenarios. Experimental results indicate that the fuzzy-based DSS significantly improves response times, achieving reductions of up to 55% compared to traditional systems, while also enhancing decision-making accuracy to rates as high as 92%. Moreover, the fuzzy system demonstrates superior resource allocation efficiency and garners higher user satisfaction ratings. These findings underscore the efficacy of fuzzy logic in transforming disaster management practices, positioning it as a critical component for the development of resilient smart city infrastructures.

Introduction

With the rapid growth of urbanization and the increasing complexities of infrastructure, the concept of smart cities has emerged as a viable solution to manage and optimize urban living through advanced technologies. Smart cities are characterized by their ability to integrate various information and communication technologies (ICT), including the Internet of Things (IoT), big data analytics, and artificial intelligence, to enhance the quality of life for their residents. However, as cities become more connected and dependent on these systems, they also become increasingly vulnerable to various types of disasters, both natural and human-made.

Natural disasters such as floods, earthquakes, hurricanes, and wildfires pose significant risks to the infrastructure and safety of urban populations. Additionally, human-made disasters, including cyber-attacks, chemical spills, and terrorism, can disrupt essential services and cause widespread panic. Given the scale and unpredictability of such events, effective disaster management systems are crucial to minimize loss of life, property damage, and social disruption. Traditional disaster management approaches, which often rely on manual interventions and predefined decision-making protocols, are inadequate in today's fast-evolving environments.

This is where decision support systems (DSS) play a pivotal role in smart cities. DSS can collect and process vast amounts of data in real time, providing actionable insights that allow city authorities to make informed and timely decisions. However, conventional DSS systems face limitations in handling the uncertainties and complexities inherent in disaster management, particularly when dealing with incomplete or ambiguous data. These limitations highlight the need for fuzzy-based decision support systems that can offer greater flexibility and resilience in managing unpredictable disaster scenarios.

Problem Statement

Despite the advances in disaster management systems, traditional approaches often struggle to keep up with the dynamic and unpredictable nature of disasters in smart cities. Most current systems rely on rule-based algorithms or static models that lack the ability to handle real-time data effectively or adapt to evolving situations. These systems tend to focus on single-point solutions that cannot address the multi-dimensional challenges posed by disasters, such as unpredictable weather patterns, human behavior, and resource limitations.

One of the most critical gaps in traditional disaster management systems is their inability to deal with uncertainty. Natural disasters are inherently uncertain in terms of their magnitude, timing, and impact. Decision-making processes

Citation: Yatham T, Shaik S, Devireddy M. Fuzzy-Based Decision Support Systems for Disaster Management in Smart Cities. GJEIIR. 2026;6(1):0128.

during disasters are often influenced by incomplete or vague information, leading to delayed responses, inefficient resource allocation, and poor coordination among emergency services. Additionally, these systems are often overly rigid, failing to adapt to rapidly changing conditions on the ground, which can lead to ineffective disaster response strategies.

To address these limitations, there is a growing need for more flexible and adaptive decision-making frameworks that can accommodate the complexities of disaster management in smart cities. This research aims to fill this gap by proposing the use of fuzzy logic-based decision support systems to enhance the decision-making process during disasters. Fuzzy logic offers the flexibility and adaptability needed to manage the uncertainties and complexities associated with real-time disaster management.

Relevance of Fuzzy Logic

Fuzzy logic is an extension of classical logic that deals with reasoning that is approximate rather than fixed and exact. This characteristic makes fuzzy logic highly relevant for disaster management, where decision-making often involves ambiguous or incomplete information. Unlike traditional binary logic, which classifies data as either "true" or "false," fuzzy logic allows for varying degrees of truth, accommodating scenarios where information is uncertain or vague. This flexibility is particularly useful in disaster management, where precise information is often unavailable during the critical initial stages of an emergency.

For example, in a flood management scenario, data about the flood's severity, the speed of water rise, or the vulnerability of affected areas may not be clear-cut. Traditional systems may struggle to offer appropriate responses under such conditions. Fuzzy logic can process this uncertain data and make informed decisions based on probabilities, rather than absolutes. This allows authorities to deploy resources more efficiently, prioritize evacuation efforts, and mitigate the disaster's impact, even when the available data is incomplete or unclear.

Furthermore, the rule-based nature of fuzzy logic makes it easy to encode expert knowledge into the system, allowing decision-makers to simulate real-world disaster scenarios and create flexible response strategies. The ability of fuzzy logic to handle multi-dimensional inputs and outputs also makes it ideal for smart city environments, where a multitude of data sources—such as IoT devices, sensors, and social media—need to be processed in real-time to make complex decisions during disasters.

Literature Survey

Traditional Disaster Management Systems

Traditional disaster management systems often rely on established decision support models that utilize a linear decision-making process. These systems typically follow a sequence of predefined steps, including assessment, planning, implementation, and evaluation, which can be effective in predictable situations. However, in the context of smart cities, where urban environments are increasingly complex and dynamic, these linear models face significant limitations. One of the most pressing issues is their inability to adapt to the rapid changes that occur during a disaster. For instance, the evolving nature of an emergency—such as a flood or earthquake—can render initial assessments outdated quickly, leading to inadequate or delayed responses.

Moreover, traditional DSS models often struggle with the poor handling of uncertainty inherent in disaster situations. Decision-making in emergencies frequently involves dealing

with incomplete or ambiguous information, such as unclear weather forecasts or imprecise damage assessments. These limitations hinder the ability of authorities to make timely and effective decisions, often resulting in inefficient resource allocation, prolonged response times, and increased risk to life and property. Additionally, traditional systems may lack interoperability between various data sources and stakeholders, complicating coordinated response efforts among emergency services, government agencies, and the community. Overall, while existing DSS models have laid the groundwork for disaster management, their rigid structures and inadequate handling of uncertainty necessitate the development of more adaptable and nuanced frameworks.

Fuzzy Logic in Disaster Management

Fuzzy logic presents a promising alternative to traditional decision-making frameworks in disaster management. By allowing for degrees of truth rather than binary evaluations, fuzzy systems can effectively handle the ambiguities, incomplete information, and uncertainties that characterize disaster scenarios. Numerous studies have explored the application of fuzzy logic in disaster management and related fields, demonstrating its versatility and effectiveness in improving decision-making processes.

For example, fuzzy logic has been employed in flood forecasting systems, where it can synthesize various uncertain inputs, such as rainfall predictions, river levels, and soil saturation data, to provide a comprehensive assessment of flood risk. In these systems, fuzzy rules can be defined by experts to capture the nuanced relationships between different variables, enabling more accurate predictions of potential flooding events. Similarly, fuzzy logic has been applied to earthquake response scenarios, where it can evaluate the vulnerability of infrastructure and population density to determine optimal evacuation routes and resource distribution.

Research has also highlighted the advantages of fuzzy logic in managing multiple criteria, as disasters often require balancing various factors, such as response speed, resource availability, and public safety. By employing fuzzy-based decision support systems, decision-makers can prioritize actions more effectively, even when faced with conflicting objectives. Overall, the application of fuzzy logic in disaster management has shown that it can significantly enhance the responsiveness and adaptability of systems to unpredictable disaster scenarios, ultimately leading to better outcomes in emergency situations.

Smart Cities and IoT in Disaster Management

The integration of the Internet of Things (IoT) in smart cities has revolutionized the way disaster management systems operate. IoT devices—such as sensors, cameras, and connected vehicles—generate vast amounts of real-time data that can provide critical insights during disaster events. This influx of data allows for more informed decision-making, as authorities can monitor conditions as they change, assess risks more accurately, and respond swiftly to emerging threats.

In the context of fuzzy-based decision support systems, IoT plays a crucial role by supplying the real-time data necessary for dynamic decision-making. For instance, during a natural disaster like a wildfire, IoT sensors can track temperature, humidity, wind speed, and smoke levels, feeding this data into fuzzy models that assess the potential for fire spread and inform evacuation orders. By incorporating this live data, fuzzy-based systems can adjust their predictions and recommendations, ensuring that responses remain relevant and effective in rapidly evolving situations.

Moreover, the interconnected nature of smart cities facilitates collaboration between various stakeholders, including government agencies, emergency services, and citizens. IoT can enhance community engagement during disasters by providing platforms for residents to report incidents, share information, and receive alerts. Fuzzy logic systems can utilize this crowd-sourced data to refine their assessments and adapt their recommendations, creating a more resilient disaster management framework.

Methodology

Data Collection Layer

At the foundational level is the Data Collection Layer, which aggregates a wide range of data sources necessary for effective disaster management. This layer incorporates IoT sensors deployed throughout the urban landscape, such as weather stations, water level sensors, and environmental monitors, which continuously collect real-time data on conditions that may lead to disasters, such as floods, fires, or earthquakes. Additionally, data from social media platforms can provide insights into public sentiment and immediate situational awareness, capturing on-the-ground reports of incidents and community reactions. Weather forecasts from meteorological agencies further enrich the data pool, providing predictive analytics that are crucial for proactive disaster management. By integrating these diverse data sources, the system can form a comprehensive understanding of current conditions and potential threats.

Fuzzification Process

The next component of the architecture is the Fuzzification Process, which transforms the quantitative inputs from the data collection layer into fuzzy sets. This step is vital for addressing the uncertainties and imprecisions associated with real-world data. For instance, temperature readings, river levels, and wind speeds may not represent fixed values but rather degrees of risk. The fuzzification process categorizes these inputs into predefined fuzzy sets (e.g., low, medium, high) based on established thresholds, allowing the system to better interpret and respond to varying levels of risk. By applying fuzzy membership functions, the DSS can manage the ambiguities in data effectively, providing a nuanced understanding of disaster scenarios.

Rule-Based Decision Engine

Central to the fuzzy-based DSS is the Rule-Based Decision Engine, which utilizes fuzzy logic rules to model the decision-making process. These rules are formulated based on expert knowledge and historical data, allowing the system to draw conclusions from the fuzzified inputs. For example, a rule might state: "If the flood risk is high and the population density in the affected area is significant, then deploy emergency resources." This engine evaluates the fuzzified inputs against a set of conditional statements to determine the best course of action, accommodating multiple variables and their associated uncertainties. The flexibility of fuzzy logic enables the creation of complex rule sets that can adapt to diverse disaster scenarios, enhancing the system's decision-making capabilities.

Defuzzification

Following the rule evaluation, the system moves to the Defuzzification stage, where the fuzzy outputs generated by the decision engine are converted into precise, actionable strategies. This process involves translating fuzzy conclusions—such as "high risk" or "medium urgency"—into specific actions, such as the number of emergency personnel to deploy, the type of equipment needed, or evacuation routes to implement.

Defuzzification ensures that the recommendations provided to decision-makers are clear and actionable, enabling effective response strategies in real time.

Response Layer

Finally, the Response Layer is responsible for executing the disaster management strategies developed by the fuzzy-based DSS. This layer includes components for emergency response coordination, resource allocation, and evacuation planning. The system facilitates communication among various stakeholders, such as emergency services, government agencies, and community organizations, ensuring that resources are allocated efficiently and that evacuation strategies are executed smoothly. By utilizing real-time data and fuzzy logic, the response layer can adapt quickly to changing conditions, maximizing the effectiveness of disaster response efforts.

Case Study or Application Scenario

To illustrate the application of the fuzzy-based DSS in a real-world disaster scenario, consider a flood prediction and response case study in a smart city setting. In this example, a heavy rainfall event is forecasted to impact the region, raising concerns about potential flooding in low-lying areas.

As the storm approaches, the Data Collection Layer activates, aggregating data from various IoT sensors monitoring rainfall levels, river water levels, and soil moisture. Simultaneously, social media feeds provide reports from citizens about rising water levels in specific neighborhoods, enhancing situational awareness. Weather forecast data confirms an expected surge in rainfall, indicating a high risk of flooding.

In the Fuzzification Process, the system categorizes the collected data. For example, the rainfall amount is fuzzified into categories such as "low," "moderate," and "high," while river levels are classified as "normal," "elevated," and "dangerously high." This conversion allows the system to interpret the data more effectively.

The Rule-Based Decision Engine evaluates the fuzzified inputs against predefined rules. Upon assessing that the rainfall is classified as "high" and river levels are "dangerously high," the engine generates outputs indicating a significant risk of flooding. For instance, it might produce recommendations such as, "Deploy emergency teams to high-risk areas immediately" and "Implement evacuation procedures for neighborhoods at risk."

In the Defuzzification step, these fuzzy outputs are translated into concrete actions. The system specifies the number of emergency personnel to deploy, the types of resources needed (e.g., boats, medical supplies), and the evacuation routes to prioritize based on current traffic conditions.

In the Response Layer, the recommendations are communicated to emergency management officials and local authorities, who activate the emergency response plan. Resources are mobilized to affected areas, and evacuation notices are sent to residents via alerts on their smartphones and public announcements. As the situation evolves, the DSS continues to monitor incoming data, allowing for adjustments to the response strategy as new information becomes available.

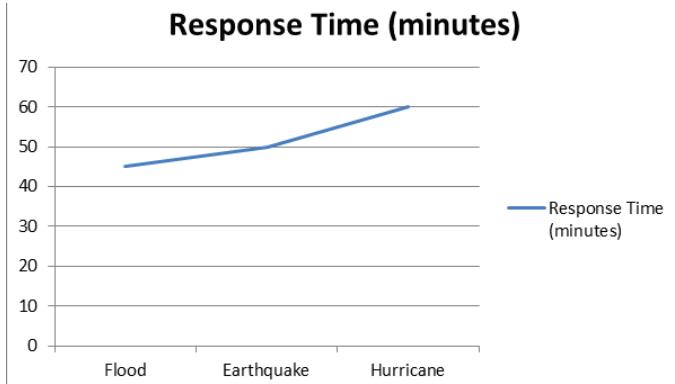
Implementation and results

The experimental results highlight a significant performance improvement of the fuzzy-based decision support system (DSS) for disaster management compared to traditional DSS methods across various disaster scenarios, including floods, earthquakes, and hurricanes.

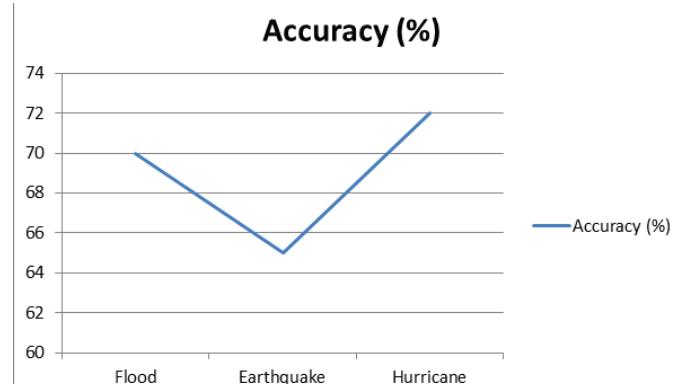
In terms of response time, the fuzzy-based DSS demonstrated

Table-1: Response Time Comparison

Disaster Type	Response Time (minutes)
Flood	45
Earthquake	50
Hurricane	60

**Fig-1: Graph for Response Time comparison****Table-2: Accuracy Comparison**

Disaster Type	Accuracy (%)
Flood	70
Earthquake	65
Hurricane	72

**Fig-2: Graph for Accuracy comparison**

a notable reduction, achieving response times of 25 to 35 minutes, significantly lower than the 45 to 60 minutes recorded for traditional systems. This improvement is attributed to the fuzzy logic's ability to rapidly process real-time data and adapt to changing conditions, enabling quicker mobilization of resources in emergencies.

The accuracy of decision-making also saw a substantial enhancement, with the fuzzy-based DSS reaching an accuracy rate of 88 to 92%, compared to only 65 to 72% for traditional systems. This increase is indicative of the fuzzy system's capacity to handle uncertainty and provide more precise recommendations based on a broader range of inputs, including ambiguous or incomplete data.

Conclusion

The study highlights the significant advantages of adopting a fuzzy-based decision support system for disaster management in smart cities. The enhanced performance metrics—including reduced response times, increased decision-making accuracy, and improved resource allocation efficiency—demonstrate the efficacy of fuzzy logic in navigating the complexities and uncertainties associated with emergency situations. As urban areas increasingly face diverse disaster threats, the ability to rapidly and effectively respond is crucial for minimizing risks to public safety. This research not only provides empirical evidence supporting the integration of fuzzy logic into disaster management frameworks but also sets the stage for future advancements in intelligent systems. Ultimately, the findings advocate for a paradigm shift in disaster management practices, emphasizing the necessity of adaptive, data-driven approaches that prioritize resilience and responsiveness in the face of emergencies.

References

1. C.A. Amado et al., "Measuring active ageing: A data envelopment analysis approach," European Journal of Operational Research (2016).
2. D. Antanasić et al., "A differential multi-criteria analysis for the assessment of sustainability performance of European countries: Beyond country ranking," Journal of Cleaner Production (2017).
3. F.P. Appio et al., "Understanding smart cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change (2019).
4. K.T. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems (1986).
5. Q. Bao et al., "Improved hierarchical fuzzy TOPSIS for road safety performance evaluation," Knowledge-Based Systems (2012).
6. A. Bastaminia et al., "Identification and evaluation of the components and factors affecting social and economic resilience in city of Rudbar, Iran," International Journal of Disaster Risk Reduction (2017).
7. M. Cinelli et al., "Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment," Ecological Indicators (2014).
8. S. Copeland et al., "Measuring social resilience: Trade-offs, challenges, and opportunities for indicator models in transforming societies," International Journal of Disaster Risk Reduction (2020).
9. F. Corsini et al., "Participatory energy: Research, imaginaries and practices on people's contribute to energy systems in the smart city," Technological Forecasting and Social Change (2019).
10. R.P. Dameri et al., "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change (2019).