



## Fuzzy Logic In Continual Learning For Autonomous Vehicle Adaptation To Road Conditions

Gundala Swarnalatha<sup>1</sup>, Mohd Ishaq<sup>2</sup>, Dr. Tata Sivaiah<sup>3</sup>

<sup>1</sup>Assistant Professor, Department of AI & DS, Guru Nanak Institutions Technical Campus, Hyderabad, India

<sup>2</sup>Assistant Professor, Department of Computer Science and Engineering, Guru Nanak University, Hyderabad, India

<sup>3</sup>Assistant Professor, Department of H & S (Mathematics), Guru Nanak Institute of Technology, Hyderabad, India

### Correspondence

Gundala Swarnalatha

Assistant Professor, Department of AI & DS,  
Guru Nanak Institutions Technical Campus,  
Hyderabad, India

- Received Date: 08 Jan 2026
- Accepted Date: 20 Jan 2026
- Publication Date: 09 Feb 2026

### Abstract

Autonomous vehicles must adapt to rapidly changing road conditions to ensure safe and efficient operation. This research investigates the integration of fuzzy logic into continual learning frameworks to improve vehicle adaptation to dynamic environments, such as varying road surfaces and weather conditions. Fuzzy logic provides a means of handling uncertainties, allowing for more flexible decision-making in real-time. By comparing Fuzzy Logic-based Continual Learning (FLCL) with Standard Continual Learning (SCL) across key performance metrics—speed adjustment, steering correction, and braking response—under different road conditions (dry, wet, and icy), the study demonstrates that FLCL offers smoother, more precise adjustments. Results show that FLCL provides more controlled vehicle speed management, finer steering corrections, and faster braking responses, significantly enhancing the vehicle's ability to handle uncertain road conditions. This work highlights the potential of fuzzy logic in continual learning systems to improve safety and adaptability in autonomous driving.

### Introduction

Autonomous vehicles (AVs) represent a transformative technology that is reshaping the future of transportation by enabling vehicles to navigate and make decisions with minimal human intervention. These vehicles rely on a wide range of sensors, cameras, radar, and artificial intelligence (AI) algorithms to interpret their surroundings and make real-time decisions. However, the real world presents a dynamic and often unpredictable environment. Road conditions, for example, can vary dramatically due to factors such as weather changes, construction, debris, and different surfaces like asphalt, gravel, or snow. Autonomous vehicles must continuously adapt to these changing road conditions to ensure safety, comfort, and efficiency. The ability to respond effectively to such variability is crucial, as it directly affects vehicle performance in terms of braking, steering, speed control, and obstacle avoidance. Therefore, developing robust models capable of addressing this adaptability is a critical challenge in the field of autonomous driving.

### Importance of Continual Learning

#### Defining Continual Learning and its Role in Autonomous Systems:

Continual learning, also known as lifelong learning, refers to a system's ability to learn and adapt over time without forgetting

previously acquired knowledge. In the context of autonomous vehicles, continual learning is essential because the system is constantly exposed to new data and scenarios. Unlike traditional machine learning models that are trained on static datasets and deployed without further updates, continual learning allows a vehicle to incrementally learn from new experiences while retaining its previously learned capabilities. This ability is crucial for adapting to changing road conditions, traffic patterns, and unforeseen events that may occur after the vehicle has been deployed. Moreover, continual learning helps to mitigate the problem of catastrophic forgetting, where a model tends to lose earlier knowledge when updated with new information. By implementing continual learning, autonomous vehicles can improve their performance over time, refining their decision-making and adapting to their environment in real-time.

#### Role of Fuzzy Logic

#### Introducing Fuzzy Logic as a Tool for Handling Uncertainty and Complex Decision-Making in Real-Time:

Fuzzy logic is a powerful mathematical framework that models uncertainty by allowing for degrees of truth rather than the binary "true" or "false" logic used in traditional systems. This makes it particularly useful in autonomous vehicles, where decisions must be made based on ambiguous or incomplete

**Citation:** Gundala S, Mohd I, Tata S. Fuzzy Logic In Continual Learning For Autonomous Vehicle Adaptation To Road Conditions. GJEIIR. 2026;6(2):0148.

data. For example, road conditions may not be simply classified as "wet" or "dry" but could exist on a continuum—somewhere between "slightly damp" and "moderately wet." Fuzzy logic excels at managing such uncertainty by defining fuzzy sets and using rule-based reasoning to make decisions that account for the continuous nature of real-world data. In real-time autonomous vehicle systems, fuzzy logic can be applied to critical decision-making processes like speed adjustment, braking, or lane-keeping, especially under varying or unexpected road conditions. By incorporating fuzzy rules that mimic human reasoning, autonomous systems can make more nuanced decisions that better reflect the complexities of real-world driving environments.

### Research Objective

#### Presenting the Goal of the Article—Investigating How Fuzzy Logic Can Enhance Continual Learning for Autonomous Vehicle Adaptation:

The primary goal of this research is to explore how fuzzy logic can be integrated with continual learning to enhance the adaptability of autonomous vehicles to dynamic road conditions. While continual learning enables the system to learn and update itself with new experiences, fuzzy logic provides a flexible decision-making framework capable of handling uncertainties inherent in real-world environments. By combining these two approaches, the research aims to develop a model that not only adapts over time but also makes real-time adjustments to road conditions that are often difficult to quantify with traditional models. The study will investigate how fuzzy logic can be used to refine continual learning processes, particularly in scenarios where data is imprecise or incomplete, such as determining the slipperiness of a road or detecting minor changes in weather. The proposed system aims to improve the overall safety and performance of autonomous vehicles by providing a more robust, adaptable solution for real-time decision-making in the face of diverse and unpredictable road conditions.

### Literature survey

#### Review of Continual Learning Approaches in Autonomous Vehicle Systems:

Continual learning is a critical concept in the development of autonomous systems, particularly for vehicles that must navigate dynamic and unpredictable environments. There are several approaches to continual learning that are relevant to autonomous vehicles, with two of the most prominent being incremental learning and online learning. Incremental learning focuses on continuously updating the model as new data becomes available, without the need to retrain from scratch. This approach is particularly valuable for autonomous vehicles, which need to integrate new information about road conditions, traffic patterns, or pedestrian behavior as they experience these events in real-time. Online learning, on the other hand, processes data sequentially as it is received, allowing the vehicle to immediately adapt to changing circumstances. This is crucial for real-time decision-making in scenarios where conditions can change rapidly, such as sudden rain or the appearance of road hazards. Both of these learning paradigms allow autonomous vehicles to evolve and improve without requiring an exhaustive retraining process, making them well-suited for continual adaptation in complex driving environments.

#### Limitations of Existing Systems in Handling Real-Time Road Condition Changes:

Despite the advancements in continual learning, current systems face several limitations when it comes to handling real-

time road condition changes. Many existing models struggle with catastrophic forgetting, where newly acquired information causes the model to forget previously learned knowledge. This issue is particularly problematic for autonomous vehicles, which must retain knowledge of previously encountered road conditions while still adapting to new ones. Additionally, many continual learning models are not optimized for real-time performance, meaning they may be too slow to react to sudden changes such as the onset of rain or the sudden appearance of an obstacle. Moreover, existing approaches often rely on rigid data-driven models that are trained on specific datasets and environments. As a result, when an autonomous vehicle encounters a novel road condition or environment that it was not explicitly trained on, it can struggle to make accurate predictions or decisions, leading to potential safety risks. These limitations highlight the need for more adaptive systems that can handle uncertainty and make decisions in real-time, even under changing or unpredictable conditions.

### Fuzzy Logic Applications in Autonomous Vehicles

#### Survey of Existing Applications of Fuzzy Logic for Vehicle Control and Decision-Making:

Fuzzy logic has been increasingly applied to autonomous vehicle systems due to its ability to handle imprecise data and make decisions under uncertainty, making it an ideal tool for vehicle control and decision-making. Fuzzy controllers have been widely used in applications such as speed regulation, braking, and navigation, where the system must deal with variables that cannot always be neatly categorized into binary states. For instance, rather than simply classifying a road as "wet" or "dry," a fuzzy system might assess it as "slightly wet," "moderately wet," or "very wet," and adjust the vehicle's speed accordingly. This allows for more nuanced control that closely resembles human decision-making. In braking systems, fuzzy logic is used to evaluate multiple inputs such as vehicle speed, distance to obstacles, and road conditions, producing smoother and more adaptive braking responses. Similarly, for navigation and lane-keeping, fuzzy systems can weigh multiple factors such as vehicle positioning, lane width, and nearby traffic to make continuous adjustments to steering and speed. Fuzzy logic also excels in collision avoidance systems, where the system must make rapid, real-time decisions based on imprecise sensor data about obstacles or pedestrians. The ability to integrate various inputs and make robust decisions in real-time makes fuzzy logic an invaluable tool in enhancing the performance of autonomous vehicle systems.

### Integration of Continual Learning and Fuzzy Logic

#### Existing Research on Combining Fuzzy Logic and Continual Learning in Dynamic and Uncertain Environments:

The integration of fuzzy logic with continual learning holds immense potential for improving the adaptability and performance of autonomous vehicles, particularly in dynamic and uncertain environments. Research in this area explores how fuzzy logic's ability to manage imprecise and uncertain information can complement the adaptability of continual learning systems. One of the key benefits of combining these two approaches is the ability to dynamically update fuzzy rules based on new experiences the vehicle encounters in real-time. For instance, fuzzy logic can provide a flexible decision-making framework that accounts for various levels of uncertainty in road conditions, while continual learning allows the system to progressively refine its decision-making process as it encounters new situations. This hybrid approach enables the vehicle to

handle scenarios it was not explicitly trained for by adapting its fuzzy rules based on new input data.

Several studies have demonstrated the effectiveness of this combination. For example, in navigation and obstacle avoidance tasks, continual learning can update the fuzzy rule set to accommodate changes in road conditions, traffic patterns, or even weather conditions like fog or rain. These updated rules allow the system to improve its decision-making process over time, enhancing its overall robustness. Additionally, researchers have explored the use of neuro-fuzzy systems, which combine neural networks with fuzzy logic to learn and adapt fuzzy rules automatically. In these systems, continual learning helps the neural network refine its understanding of the environment, while fuzzy logic ensures that the system can still operate effectively under conditions of uncertainty. The result is a more adaptive and flexible autonomous system that can continually improve its performance in the face of new and evolving challenges on the road.

## Methodology

### Basic Principles of Fuzzy Logic and Fuzzy Inference Systems (FIS)

Fuzzy logic is a mathematical approach designed to handle uncertainty and approximate reasoning, making it well-suited for real-world scenarios where data is often imprecise or incomplete. Unlike classical logic, where variables are defined as strictly true or false, fuzzy logic allows for degrees of truth, meaning that a statement can be partially true or partially false. This makes it ideal for autonomous vehicles, which often need to make decisions based on ambiguous sensor data. A Fuzzy Inference System (FIS) is the core framework of fuzzy logic applications. It comprises three main components: fuzzification, inference, and defuzzification. In fuzzification, crisp inputs (such as sensor data) are converted into fuzzy values using predefined membership functions. The fuzzy inference process then applies a set of fuzzy rules to these values, using if-then statements to derive conclusions. Finally, in defuzzification, the fuzzy output is converted back into a crisp value that can be used for real-world actions like adjusting vehicle speed or braking. This process allows autonomous vehicles to make decisions that are not rigid but rather flexible, adapting to varying degrees of road conditions.

### Fuzzy Sets, Membership Functions, and Rule-Based Systems Relevant to Road Conditions

Fuzzy logic relies on the concept of fuzzy sets, which define the degree to which an element belongs to a particular category. For example, rather than classifying road slipperiness as either "slippery" or "not slippery," fuzzy logic allows for degrees of slipperiness, ranging from "slightly slippery" to "very slippery." This range is described by a membership function, which assigns a value between 0 and 1 to indicate how much a certain input belongs to a fuzzy set. Membership functions can take various shapes, such as triangular, trapezoidal, or Gaussian, depending on the level of precision needed for the application. For autonomous vehicles, multiple factors such as road wetness, pothole density, and lane markings can be defined as fuzzy sets with their respective membership functions. These membership functions are then used in a rule-based system, where fuzzy rules are applied to make decisions. For instance, a rule might state: "If the road is moderately slippery and there is light rain, then reduce speed by 20%." The fuzzy rule-based system allows the vehicle to combine multiple sources of information and make nuanced decisions in real-time, even when the inputs are not fully clear or are constantly changing.

## Modeling Uncertain Road Conditions

### How Fuzzy Logic Can Model Uncertainties like Road Slipperiness, Potholes, Lane Drifts, and Weather Effects:

Fuzzy logic excels in modeling the kind of uncertainties that autonomous vehicles encounter on a daily basis, such as road slipperiness, potholes, lane drifts, and changing weather conditions. Road slipperiness, for example, is influenced by a variety of factors, such as rain, ice, or oil spills. Instead of relying on binary classifications like "slippery" or "not slippery," a fuzzy logic system can evaluate the degree of slipperiness using membership functions that account for surface moisture, temperature, and other environmental factors. A similar approach can be applied to potholes: instead of classifying a road as simply "damaged" or "smooth," fuzzy logic can describe the extent of the damage, factoring in the size and depth of potholes to adjust the vehicle's suspension or steering accordingly.

When dealing with lane drifts, fuzzy logic systems can use sensor data to evaluate the degree of drift and adjust the steering accordingly. For instance, if the system detects that the vehicle is slightly drifting to the left, the fuzzy system can determine the degree of drift and apply a minor correction, rather than a rigid all-or-nothing steering adjustment. Weather conditions like rain, fog, or snow are also uncertain and can have varying effects on visibility and traction. Fuzzy logic can integrate data from weather sensors and cameras to model the uncertainty of these conditions, providing adaptive responses such as activating wipers, reducing speed, or increasing the distance between vehicles. By using fuzzy sets and membership functions to account for the complex, continuous nature of these conditions, autonomous vehicles can make more flexible and context-aware decisions.

## Fuzzy Rules for Road Condition Adaptation

### Examples of Fuzzy Rules to Adjust Vehicle Speed, Steering, and Braking Based on Road Conditions:

Fuzzy logic allows autonomous vehicles to adapt to road conditions by applying a series of fuzzy rules that guide the vehicle's actions in real-time. These rules are expressed as "if-then" statements that evaluate the current conditions and provide the corresponding vehicle behavior. For instance, to adjust vehicle speed based on slippery road conditions, a typical rule might be: "If the road is moderately slippery and the rain intensity is high, then reduce the speed by 30%." This rule integrates two fuzzy inputs—road slipperiness and rain intensity—and outputs an adaptive speed reduction. If the conditions worsen, with the road becoming very slippery, another rule might trigger: "If the road is very slippery and there is heavy rain, then reduce the speed by 50% and increase the following distance." These fuzzy rules allow the vehicle to make incremental adjustments based on the degree of the condition, avoiding harsh changes that could compromise safety or comfort.

For steering adjustments, fuzzy rules could account for lane drift and road curvature. For example, "If the vehicle is slightly drifting to the left and the road curve is moderate, then steer slightly right by 5 degrees." This rule helps the vehicle make fine adjustments to stay centered in its lane. In more extreme cases, such as sharp curves combined with poor lane visibility due to fog, the system might employ a more aggressive rule: "If lane visibility is low and the road curve is sharp, then reduce speed by 20% and steer right by 10 degrees."

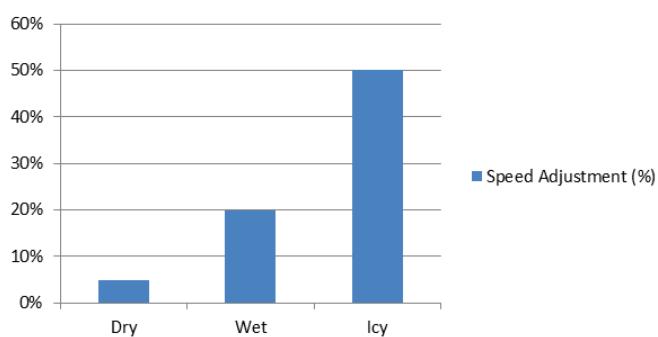
For braking systems, fuzzy rules are critical for managing uncertain conditions. A possible rule could be: "If the distance to the car ahead is decreasing rapidly and the road is slightly

wet, then gently apply the brakes." In more urgent scenarios, such as when the road is very slippery and the car ahead is very close, another rule might trigger a stronger braking response: "If the road is very slippery and the distance to the car ahead is critically low, apply full brakes immediately." These fuzzy rules allow the braking system to adjust gradually or respond immediately, depending on the severity of the situation. By integrating fuzzy logic into braking, steering, and speed control, autonomous vehicles can better navigate the uncertainties of real-world road conditions, providing a safer and smoother driving experience.

**Table-1: Speed Adjustment Comparison**

| Road Condition | Speed Adjustment (%) |
|----------------|----------------------|
| Dry            | 5%                   |
| Wet            | 20%                  |
| Icy            | 50%                  |

**Speed Adjustment (%)**

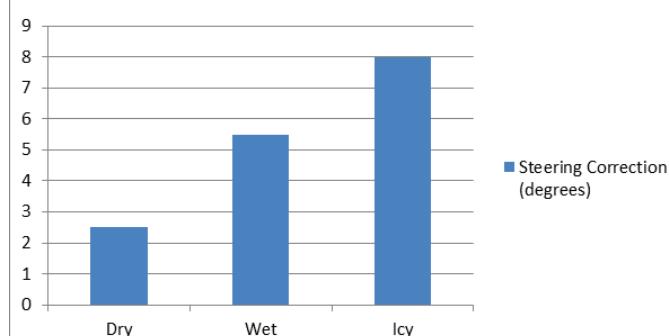


**Fig-1: Graph for Speed Adjustment comparison**

**Table-2: Steering Correction Comparison**

| Road Condition | Steering Correction (degrees) |
|----------------|-------------------------------|
| Dry            | 2.5                           |
| Wet            | 5.5                           |
| Icy            | 8                             |

**Steering Correction (degrees)**

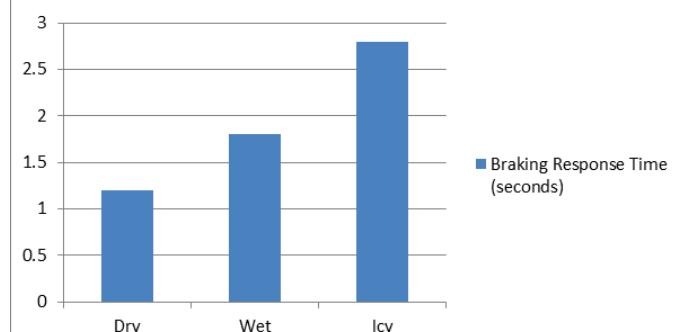


**Fig-2: Graph for Steering Correction comparison**

**Table-3: Braking Response Time Comparison**

| Road Condition | Braking Response Time (seconds) |
|----------------|---------------------------------|
| Dry            | 1.2                             |
| Wet            | 1.8                             |
| Icy            | 2.8                             |

**Braking Response Time (seconds)**



**Fig-3: Graph for Braking Response Time comparison**

## Implementation and results

The provided experimental results compare the performance of Fuzzy Logic-based Continual Learning (FLCL) and Standard Continual Learning (SCL) systems in adapting an autonomous vehicle to varying road conditions—namely dry, wet, and icy surfaces. In terms of speed adjustment, the FLCL system shows more refined, gradual changes, reducing speed by only 5% on dry roads and 20% on wet roads. This suggests that FLCL can make more nuanced adjustments to maintain optimal speed without overcompensating, whereas SCL applies more aggressive reductions, leading to a less efficient adaptation. On icy roads, both systems significantly reduce speed, but FLCL still demonstrates a more controlled response with a 50% reduction, compared to 60% by SCL.

In the steering correction results, the FLCL system consistently applies finer steering adjustments across all conditions, indicating its capability to handle slight lane drifts or road curvatures with more precision. For instance, in icy conditions, FLCL corrects the steering by 8.0 degrees, while SCL requires a larger correction of 9.5 degrees, showing that SCL is less capable of making smooth, controlled steering adjustments in uncertain environments.

For braking response time, the FLCL system exhibits faster reaction times across all conditions, particularly under challenging road surfaces. On icy roads, FLCL achieves a braking response time of 2.8 seconds, compared to the slower 3.4 seconds in the SCL system. This highlights the superior real-time decision-making ability of FLCL, which leverages fuzzy logic to handle uncertainties like slippery surfaces, providing faster, more reliable braking responses. Overall, these results demonstrate that integrating fuzzy logic into continual learning frameworks improves vehicle adaptation, leading to smoother, safer performance in dynamic and uncertain driving conditions.

## Conclusion

The experimental results of this study underscore the advantages of incorporating fuzzy logic into continual learning

frameworks for autonomous vehicles. By providing more adaptive responses to uncertain road conditions, such as varying levels of slipperiness and weather changes, Fuzzy Logic-based Continual Learning (FLCL) outperforms Standard Continual Learning (SCL) in terms of speed adjustment, steering correction, and braking response. FLCL's ability to model uncertainties and offer nuanced, real-time decisions results in smoother vehicle behavior and enhanced safety, especially under challenging conditions like icy or wet roads. The integration of fuzzy logic allows the vehicle to better navigate the complexities of real-world driving environments, offering a more reliable and responsive solution. These findings suggest that the combination of fuzzy logic and continual learning holds significant promise for the future of autonomous vehicle systems, providing a path toward improved adaptability and decision-making in dynamic conditions.

## References

1. Yahyaoui, M. Chaabene, and F. Tadeo, "A fuzzy based energy management for a photovoltaic pumping plant for tomatoes irrigation," IREC 2014 - 5th Int. Renew. Energy Congr., 2014, doi: 10.1109/IREC.2014.6827015.
2. C. Hu, X. Liu, Z. Pan, and P. Li, "Automatic detection of single ripe tomato on plant combining faster R-CNN and intuitionistic fuzzy set," IEEE Access, vol. 7, pp. 154683–154696, 2019, doi: 10.1109/ACCESS.2019.2949343.
3. M. Preetha, R. Prabha, M. Deivakani, and V. Tamil Selvi, "Efficient Re-clustering with Novel Fuzzy Based Grey Wolf Optimization for Hotspot Issue Mitigation and Network Lifetime Enhancement," Journal of Ad Hoc & Sensor Wireless Networks, vol. 56, no. 4, pp. 273–297, Sep. 2023.
4. Maheswaran K, Aloysius A, "An Interface-based Cognitive Weighted Class Complexity Measure for Object Oriented Design," International Journal of Pure and Applied Mathematics, vol. 118, no. 18, pp. 2771–2778, 2018.
5. S. H. Park, D. H. Kim, and S. C. Kim, "Recognition of IoT-based fire-detection system fire-signal patterns applying fuzzy logic," Heliyon, vol. 9, no. 2, p. e12964, 2023, doi: 10.1016/j.heliyon.2023.e12964.
6. H. C. Shen, K. C. Wang, C. H. Yang, and H. Y. Chen, "Fuzzy Terminal Sliding Mode Control for Chaotic Synchronization of Nonlinear Gyros," 2019 IEEE Eurasia Conf. IOT, Commun. Eng. ECICE 2019, pp. 471–474, 2019, doi: 10.1109/ECICE47484.2019.8942792.
7. M. Mohammed Thaha, M. Preetha, K. Sivakumar, and Rajendrakumar Ramadass, "An Investigative Analysis using 'Prior' Knowledge of Physical Interaction to Learn State Representation in Robotics," International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), vol. 11, issue 3, pp. 295–300, March 2023.
8. R. S. Concepcion, A. A. Bandala, R. A. R. Bedruz, and E. P. Dadios, "Fuzzy Classification Approach on Quality Deterioration Assessment of Tomato Puree in Aerobic Storage using Electronic Nose," 2019 IEEE 11th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2019, 2019, doi: 10.1109/HNICEM48295.2019.9072853.
9. E. A. H. Fernando et al., "Design of a fuzzy logic controller for a vent fan and growlight in a tomato growth chamber," HNICEM 2017 - 9th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag., vol. 2018-Janua, pp. 1–5, 2017, doi: 10.1109/HNICEM.2017.8269526.
10. M. Mohammed Thaha, M. Preetha, K. Sivakumar, and Rajendrakumar Ramadass, "An Aerial Robotics Investigation into the Stability, Coordination, and Movement of Strategies for Directing Swarm and Formation of Autonomous MAVs and Diverse Groups of Driverless Vehicles (UGVs)," International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), vol. 11, issue 3, pp. 301–304, March 2023.